Читаем Простые числа полностью

Как уже говорилось, Гаусс ввел функции комплексного переменного, представляемые в трехмерном пространстве. Риман сделал следующий шаг и определил то, что позже станет называться комплексными функциями комплексного переменного. Проблема заключалась в том, что они требуют четырехмерного пространства и поэтому не могут быть наглядно представлены. Используя особые приемы, похожие на описанные в предыдущей главе, Риман получил трехмерное изображение нулей дзета-функции: поверхность, состоящую из регулярно повторяющихся холмов и впадин.

У этой функции есть два типа «нулей», то есть таких значений аргумента, которые при подстановке в функцию обращают ее в ноль. Первый тип — четные отрицательных числа: х = —2, х = —4, х = —6 …, называемые «тривиальными» нулями.

Другие нули совсем не тривиальные, и вычислить их очень трудно. Они образуют бесконечное множество и находятся на так называемой «критической полосе» комплексных чисел, действительная часть которых больше нуля, но меньше единицы (0 <= Re(х) <= 1). Эта полоса наиболее тесно связана с простыми числами. В 1896 г. именно этим вопросом занимались два математика, Жак Адамар и Шарль Жан Ла Валле Пуссен, независимо друг от друга доказавшие гипотезу Гаусса о распределении простых чисел.

В одной из записей и без каких-либо доказательств Риман сформулировал утверждение, что все нетривиальные нули дзета-функции имеют вид 1/2 + iy, то есть они лежат на прямой х = 1/2, которая проходит сквозь дзета-функцию.

«Все нетривиальные нули дзета-функции имеют действительную часть, равную 1/2».

Если эта гипотеза верна, то все простые числа распределены регулярно, точнее, насколько это возможно регулярно. Поясним это с помощью аналогии: представим себе функцию, характеризующую звуки скрипичного концерта — ряд синусоидальных кривых. Для простоты предположим, что играет только одна скрипка. Вместе с рядом четких подъемов и впадин мы увидим другие неопределенные формы, которые несколько нарушают гармонию кривой линии. В акустических терминах это называется «белый шум», возможными причинами которого являются статические разряды, фоновые звуки и так далее. Таким образом, гипотеза Римана утверждает, что любые отклонения в распределении простых чисел связаны с математическим «белым шумом». Это означает, что распределение простых чисел основано на определенном правиле, а не на чистой случайности. Таким образом Риману удалось навести некоторый порядок в разношерстной компании простых чисел.

* * *

ПОПРОБУЙТЕ САМИ

Если вы хотите пополнить ваши знания по теории функций комплексного переменного и рядов, то для этого существует много прекрасных учебников. Вы даже можете попытаться доказать гипотезу Римана. Если вам это удастся, то Математический институт Клэя вручит вам награду в один миллион долларов независимо от вашего возраста, пола или профессии. Однако награду вы получите не сразу: потребуется время на изучение доказательства и подтверждение его правильности. В июне 2004 г. Луи де Бранж де Бурсия, математик из Университета Пердью (штат Индиа-на, США), заявил, что сумел доказать гипотезу Римана, но его доказательство было позднее отклонено. То же самое произошло в 2008 г. с доказательством Сян-Джин Ли (Xian-Jin Li).

Луи де Бранж де Бурсия.

* * *

В 1914 г. британские математики Годфри Харолд Харди (1877–1947) и Джон Идензор Литлвуд (1885–1977) доказали, что на прямой линии существует бесконечное число нулей. Это не доказывает гипотезу Римана, зато подкрепляет мнение специалистов о ее правильности. Многие думают, что если на «критической прямой» находится бесконечное множество нулей, то все нули уже в нем учтены, но это лишь показывает типичную ошибку в восприятии бесконечности, концепция которой полна парадоксов, потому что может также существовать бесконечное количество нулей, которые не лежат на этой прямой. На сегодняшний день вычислено около десяти миллионов «нетривиальных» нулей, расположенных на этой линии.

Перейти на страницу:

Все книги серии Мир математики

Математики, шпионы и хакеры
Математики, шпионы и хакеры

Если бы историю человечества можно было представить в виде шпионского романа, то главными героями этого произведения, несомненно, стали бы криптографы и криптоаналитики. Первые — специалисты, виртуозно владеющие искусством кодирования сообщений. Вторые — гении взлома и дешифровки, на компьютерном сленге именуемые хакерами. История соперничества криптографов и криптоаналитиков стара как мир.Эволюционируя вместе с развитием высоких технологий, ремесло шифрования достигло в XXI веке самой дальней границы современной науки — квантовой механики. И хотя объектом кодирования обычно является текст, инструментом работы кодировщиков была и остается математика.Эта книга — попытка рассказать читателю историю шифрования через призму развития математической мысли.

Жуан Гомес

Математика / Образование и наука
Когда прямые искривляются
Когда прямые искривляются

Многие из нас слышали о том, что современная наука уже довольно давно поставила под сомнение основные постулаты евклидовой геометрии. Но какие именно теории пришли на смену классической доктрине? На ум приходит разве что популярная теория относительности Эйнштейна. На самом деле таких революционных идей и гипотез гораздо больше. Пространство Минковского, гиперболическая геометрия Лобачевского и Бойяи, эллиптическая геометрия Римана и другие любопытные способы описания окружающего нас мира относятся к группе так называемых неевклидовых геометрий. Каким образом пересекаются параллельные прямые? В каком случае сумма внутренних углов треугольника может составить больше 180°? Ответы на эти и многие другие вопросы вы найдете в данной книге.

Жуан Гомес

Математика / Образование и наука

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное