Алгебраические реализации решета более полезны для разработки быстрых вычислительных алгоритмов. Одной из таких реализаций является решето Аткина, предложенное Артуром Аткиным и Дэниелом Бернштейном. Этот алгоритм позволяет найти все простые числа, меньшие или равные данному натуральному числу.
В некотором смысле это улучшенная версия решета Эратосфена. Когда мы говорим «улучшенная», мы на самом деле имеем в виду «обновленная», так как решето Аткина, строго говоря, уступает решету Эратосфена. Эта версия устраняет числа, кратные не простым числам, а только квадратам простых чисел.
Конечно, в идеале хотелось бы получить формулу, которая связывает каждое натуральное число
Существуют также многочлены для «генерации» простых чисел, подобные тем, что использовал Эйлер, чтобы получить список 40 простых чисел с помощью функции f(х) = х2 + х + 41, которая генерирует простые числа для каждого значения х.
Например,
Однако формула не работает начиная со значений 41 и 42, при подставлении которых получаются составные числа:
Эйлер продолжил изучение этого многочлена и пришел к выводу, что многочлен более общего вида,
В настоящее время большинство известных простых чисел (мы всегда имеем в виду большие простые числа) являются так называемыми простыми числами Мерсенна. Причина этого — в наличии теста простоты Люка-Лемера, который эффективно работает для чисел такого типа. Напомним, что число Мерсенна имеет вид 2n — 1. Когда такое число является простым, оно называется «простым числом Мерсенна». На момент 14 апреля 2011 г. известно только 47 простых чисел Мерсенна. Самым большим из них является число 243112609—1, которое имеет почти 13 млн цифр.