Действовали здесь и высшие мотивы: стремление сделать математику столь же мощным инструментом анализа общества, каким она проявила себя в естественных науках. Но если в наши дни такое стремление приветствовалось бы большинством представителей общественных наук, в конце 1940-х годов оно, вероятнее всего, и было главной причиной отторжения самой идеи применения теории игр. В то время академическим курятником правил Кейнс, а он считал невозможным математическое описание человеческого поведения.
«Теория игр и экономическое поведение» не теряла времени на апологию применения математических методов в ходе принятия экономических решений. Фон Нейман и Моргенштерн отвергли как «совершенно ошибочный» аргумент, будто человеческие и психологические аспекты экономики препятствуют использованию математического анализа. Указывая на то, что математику начали использовать в физике только в XVI веке, а в химии и биологии — в XVIII, они утверждали, что перспективы математизации этих наук «в эти ранние периоды вряд ли могли быть лучшими, чем в экономике — mutatis mutandis{*1}
— сегодня»[13].Фон Нейман и Моргенштерн отвергали возражения, основанные на том, что их строгие математические операции и упор на кван-тификацию являются нереалистическими упрощениями, потому что «рядовой человек... осуществляет экономическую активность в сфере господства неопределенности»[14]
. Ведь в конце концов свет и тепло люди тоже воспринимают нечетко:«Чтобы превратить физику в науку, эти явления (тепло и свет) нужно было измерить. А в результате люди начали использовать — прямо или косвенно — результаты таких измерений даже в повседневной жизни. То же самое может случиться в будущем и в экономике. Когда с помощью теории, использующей [измерения], удастся достичь более полного понимания человеческого поведения, человеческая жизнь может существенно измениться. А это означает, что изучение этих проблем не обязательно представляет собой упадок науки»[16]
В «Теории игр и экономическом поведении» анализ начинается с простого примера: человек выбирает между двумя альтернативами, как при выборе между орлом и решкой в игре в «чет и нечет». Но на этот раз фон Нейман и Моргенштерн проникают значительно глубже в природу принятия решений, заставляя человека делать выбор не между двумя простыми возможностями, а между двумя комбинациями событий.
Они рассматривают пример с человеком, который предпочитает кофе чаю, а чай молоку[16]
. Ему задают вопрос: «Что ты предпочтешь — чашку кофе или стакан, в котором с шансами 50 на 50 будет чай или молоко?» Естественно, он выберет чашку кофе.А если сменить его предпочтения и задать тот же вопрос? Пусть на этот раз он предпочитает молоко и чаю, и кофе, но все-таки лучше кофе, чем чай. Теперь выбор между гарантированным кофе и возможностью с равной вероятностью получить чай или молоко становится менее очевидным, чем в первом случае, потому что неопределенный исход сулит ему выполнение главного желания (молоко) или же то, что ему нужно меньше всего (чай). Изменяя вероятности нахождения в стакане чая или молока и спрашивая, в какой момент для человека гарантия получения кофе и игра на получение молока с риском получить вместо него нежеланный чай станут одинаково предпочтительны, мы можем получить количественную оценку — фиксированное число — для измерения степени предпочтительности молока, кофе и чая.
Пример становится более наглядным, если перейти к технике измерения выгоды — степени удовлетворенности — от обладания одним долларом по сравнению с выгодой от получения второго доллара, то есть обладания двумя долларами. Теперь для человека лучшим исходом должно быть обладание двумя долларами, которое мы поставим на место получения молока в предыдущем примере; отсутствие денег займет теперь место чая, как наименее благоприятного исхода, и один доллар займет место среднего по предпочтительности варианта — получения кофе.
Сделаем опыт более реалистичным и будем измерять полезность, т.е. степень удовлетворения. Пусть наш человек выбирает между гарантированным одним долларом и возможностью получить либо еще один, либо остаться без ничего.