Читаем Прозрение полностью

Впервые это удивительное соотношение определил английский ученый Джеймс Джоуль в 1843 году. Можно себе представить, как отнеслись к такому заявлению современники Джоуля. Тогда теплота считалась некоей жидкостью, перетекающей из горячего тела в холодное (теплород). Только через некоторое время работа Джоуля получила признание Томсона (лорда Кельвина) и Максвелла. Авторитет этих людей сломил отчужденность к исследованиям выдающегося ученого, среди которых надо еще упомянуть закон Джоуля о количестве выделяемого тепла электрическим током (Q=I2·R·t) и закон Джоуля-Томсона, на котором основан один из методов получения низких температур (например, в домашних холодильниках).

Второй закон термодинамики, на первый взгляд, тоже довольно прост и очевиден. «Теплота не может самопроизвольно переходить от холодного предмета к горячему предмету». Это его простейшая формулировка. Это единственный закон в физике, который не безразличен к смене знака времени. Поясним примером. Пройденный путь равен скорости помноженной на время (s = v·t). Если знак времени положителен, то, зная скорость, получаем пройденный нами путь. Отрицательный знак – говорит о расстоянии, где мы были раньше на это время. И так со всеми законами физики, кроме Второго Закона. Если в идеальном случае согласно предыдущей простой формуле мы можем вернуться в начало пути, то Второй Закон говорит о том, что вернуться то можно, но только в пространстве, а не во времени.

Это типичный пример из научной и популярной литературы. Но здесь мы с вами, читатель, попались в ловушку, в которую попали и до сих пор находятся в ней многие ученые и популяризаторы науки, связавшие свои исследования с понятием – энтропия!

В приведенном примере все правильно, кроме того, что он никак не связан с термодинамикой, следовательно, с термодинамическими системами, следовательно, со вторым законом термодинамики. Давайте разбираться.

Второй закон термодинамики, который утверждает необратимость процессов во времени только в термодинамических системах, не обменивающихся теплотой с внешней средой, т.е. энтропия таких систем всегда растет. Это есть непреложный факт.

Сделаем небольшой экскурс в историю. Этот закон возник при изучении и постройке двигателей, преобразующих теплоту в механическую работу (паровых машин и проч.). Оказалось, что для получения работы надо обязательно иметь два источника теплоты, как говорят, горячий и холодный. И только поток теплоты от первого источника ко второму совершает работу. Наиболее эффективен этот процесс при использовании, так называемого рабочего тела (обычно газа или пара). Хотя, в принципе, можно обойтись и без него. Например, у Р. Фейнмана в его знаменитых лекциях по физике описано колесо с резиновыми спицами. Если эти спицы подогревать одну за другой, то колесо начнет вращаться. Можно на его ось насадить блок, и через него поднимать небольшой груз – совершать работу. Но опыт изобретений таких машин показывает, что они, например, не могут иметь большую мощность, у них мал коэффициент полезного действия и проч. Никто ими серьезно сейчас уже не занимается. Практически все тепловые машины работают циклически. Возьмем для определенности в качестве рабочего тела воздух. Он нагревается, например, в камере сгорания, где сгорает топливо, создавая при этом большое давление или большую скорость (кинетическую энергию). Давление двигает поршни поршневых машин и, следовательно, вращает их вал; кинетическая энергия преобразуется на лопатках турбин в крутящий момент на её валу. Так работают двигатели внутреннего сгорания (автомобили, речные суда, танки и т.п.) и газовые турбины (самолеты, корабли). Далее рабочее тело поступает в атмосферу (у этих двух двигателей), где оставшаяся в нем теплота теряется (отдается холодному источнику). Цикл замкнулся, так как двигатель забирает рабочее тело из атмосферы, но, понятно, совсем из другого места, где воздух чист, не смешан с продуктами сгорания. Существуют машины, в которых рабочее тело не выходит наружу, но в этом случае необходимы два теплообменных аппарата – в одном из них рабочее тело нагревается, в другом – охлаждается. Это, например, паротурбинные установки, двигатели Стирлинга, обыкновенные домашние холодильники.

Возникает вопрос. Нельзя ли как-то построить тепловой двигатель без холодного источника тепла? Это не противоречит закону сохранения энергии. Очень много теплоты, например, в мировом океане. Вот бы ее использовать! Но еще в 1824 году французский инженер Сади Карно доказал, что такая машина принципиально невозможна. В качестве простой аналогии он сравнил тепловые и водяные двигатели. Производство работы в последних связано с падением воды с более высокого уровня на более низкий. Ясно же, что нужны два уровня воды. Так и возможность работы тепловых двигателей связана с переходом теплоты с более высокого (горячего) уровня к более низкому (холодному).

Перейти на страницу:

Похожие книги

100 великих загадок Африки
100 великих загадок Африки

Африка – это не только вечное наследие Древнего Египта и магическое искусство негритянских народов, не только снега Килиманджаро, слоны и пальмы. Из этой книги, которую составил профессиональный африканист Николай Непомнящий, вы узнаете – в документально точном изложении – захватывающие подробности поисков пиратских кладов и леденящие душу свидетельства тех, кто уцелел среди бесчисленных опасностей, подстерегающих путешественника в Африке. Перед вами предстанет сверкающий экзотическими красками мир африканских чудес: таинственные фрески ныне пустынной Сахары и легендарные бриллианты; целый народ, живущий в воде озера Чад, и племя двупалых людей; негритянские волшебники и маги…

Николай Николаевич Непомнящий

Приключения / Прочая научная литература / Образование и наука / Научная литература / Путешествия и география
Эволюция: Триумф идеи
Эволюция: Триумф идеи

Один из лучших научных журналистов нашего времени со свойственными ему основательностью, доходчивостью и неизменным СЋРјРѕСЂРѕРј дает полный РѕР±Р·ор теории эволюции Чарльза Дарвина в свете сегодняшних представлений. Что стояло за идеями великого человека, мучительно прокладывавшего путь новых знаний в консервативном обществе? Почему по сей день не прекращаются СЃРїРѕСЂС‹ о происхождении жизни и человека на Земле? Как биологи-эволюционисты выдвигают и проверяют СЃРІРѕРё гипотезы и почему категорически не РјРѕРіСѓС' согласиться с доводами креационистов? Р' поисках ответа на эти РІРѕРїСЂРѕСЃС‹ читатель делает множество поразительных открытий о жизни животных, птиц и насекомых, заставляющих задуматься о людских нравах и Р­РўР

Карл Циммер

Научная литература / Биология / Образование и наука