Именно в этом аспекте исторически выделилось понятие информации, как чего-то материально несущественного, но весьма ценного для системы. Понятно, что одна и та же информация воздействует (или не воздействует) на различные системы по-разному, или на туже систему, но в разное время. Поэтому нельзя провести резкой границы между информацией и силовым (энергетическим) воздействием, т.е. информация передается при любом взаимодействии: соударение молекул в термодинамической системе, разрушение здания авиабомбой, прием радиосигнала телевизором, чтение книги и т.п.
Эти примеры показывают на относительность интуитивного понятия порядка. Действительно, в первом примере, кристаллы твердого тела, даже для одного вещества, могут иметь различную форму (морозные узоры на окнах) – в каком случае порядок больше? Шары в ящике можно уложить по некоторой закономерности – будет ли выше порядок? И здесь нет количественного выхода, так как невозможно численно выразить отличие этих двух состояний.
Поэтому количественную меру неопределенности состояния системы (беспорядка) –
Для направления отсчета принято, что энтропия принимает максимальное значение при полном хаосе. Представить себе это состояние невозможно, так же как и нуль энтропии – состояние порядка при максимальной сложности.
Универсальность энтропии обусловлена самой сущностью этого понятия, связанного с вероятностью всех возможных состояний системы. Например, неопределенность существует при передаче информации по каналам связи, при определении конкретного состояния некоторого физического объекта (здоровья, технического состояния и т.п.), в термодинамике и статистической физике. Энтропия сигнала, посланного по линии связи, будет больше на том её конце, где информация принимается. Так как в процессе его прохождения по линии обязательно возникнут помехи, которые создадут неопределенность. Сигнал может быть понят принимающей системой лишь с некоторой вероятностью.
В термодинамике энтропия есть функция данного состояния системы, определяемого известными параметрами (давлением, температурой и проч.).
Энтропия не есть явление или субстанция, а лишь вероятностная мера неопределенности состояния системы.
Поэтому такие термины, как «генерирование энтропии», «негаэнторопия» неестественны и часто связаны с плохим переводом иностранных статей и книг.Далее следуют просто копии толкований перечисленных ниже терминов, взятых из Википедии. Он приведен здесь для удобства чтения бумажной формы этой книжки, когда нет немедленного доступа к Интернету.
ФИЗИКА
Диполь
– электрический, совокупность двух равных по абсолютной величине разноимённых точечных зарядов, находящихся (закрепленных) на некотором расстоянии друг от друга.Детерминизм
– абсолютная, строгая взаимосвязь и взаимообусловленность всех происходящих процессов и явлений.ХИМИЯ
М
алоновая кислота (пропандиовая, метандикарбоновая кислота) НООССН2СООН – двухосновная предельная карбоновая кислота. Обладает всеми химическими свойствами, характерными для карбоновых кислот. Соли и сложные эфиры малоновой кислоты называются малонатами.БИОЛОГИЯ
Ганглий
, или нервный узел – скопление нервных клеток, состоящее из тел, дендритов и аксонов нервных клеток и глиальных клеток. Обычно ганглий имеет также оболочку из соединительной ткани. Имеются у многих беспозвоночных и всех позвоночных животных. Часто соединяются между собой, образуя различные структуры (нервные сплетения, нервные цепочки и т. п.).Нейроглия
, или просто глия – совокупность вспомогательных клеток нервной ткани. Составляет около 40 % объёма центральной нервной системы (ЦНС). Количество глиальных клеток в среднем в 10-50 раз больше, чем нейронов. Глиальные клетки составляют специфическое микроокружение для нейронов, обеспечивая условия для генерации и передачи нервных импульсов, а также осуществляя часть метаболических процессов самого нейрона. Нейроглия выполняет опорную, трофическую, секреторную, разграничительную и защитную функции.