Возьмем вид
2. Вторая элементарная «группировка» использует операцию, состоящую не в объединении индивидов, рассматриваемых как эквивалентные (как в первой группировке), а в соединении асимметричных отношений, которые выражают различия этих индивидов. Объединение этих различий предполагает тогда последовательный порядок, и, следовательно, «группировка» образует «качественную сериацию».
Если отношение
3. Третья основная операция — это операция замещения, основа эквивалентности, которая объединяет в составной класс различные простые классы, полученные в результате предшествующего объединения.
В самом деле, между двумя элементами
4. Если операции предшествующей «группировки» перевести в отношения, то они порождают реципрокность, свойственную симметричным отношениям. Эти последние являются не чем иным, как отношениями, объединяющими между собой элементы одного и того же класса, т. е. отношениями эквивалентности (в противоположность асимметричным отношениям, которые выражают различие). Симметричные отношения (например, родственные отношения между братьями, двоюродными братьями и т. п.) группируются, следовательно, по образцу предшествующей «группировки», но обратная операция в этом случае идентична прямой, что выражается, по существу, в самом определении симметрии:
Четыре рассмотренные группировки — это «группировки» аддитивного порядка, причем две из них (первая и третья) относятся к классам, а две другие — к отношениям. Существуют, кроме того, еще четыре «группировки», в основе которых лежат мультипликативные операции, т. е. операции, относящиеся одновременно к более чем одной системе классов или отношений. Эти «группировки» строго соответствуют первым четырем.
5. Прежде всего, если дано два ряда включенных друг в друга классов
Прямая операция двух классов
6. Точно так же можно умножить друг на друга два ряда отношений, т. е. найти все отношения, существующие между расположенными в ряд объектами, исходя одновременно из двух типов отношений. Наиболее простым случаем такой группировки является качественное «взаимно-однозначное соответствие».
7 и 8. Наконец, можно сгруппировать индивиды не по принципу таблиц с двойным входом, как в двух предыдущих случаях, а путем приведения одного члена в соответствие многим (например, отец по отношению к сыновьям). В этом случае «группировка» принимает форму генеалогического древа и строится или для классов (7), или для отношений (8), причем эти последние асимметричны, если их рассматривать с точки зрения одного из данных двух элементов (отец и т. п.), и симметричны с точки зрения другого (братья и т. п.).