В реальной жизни риск, как правило, связан с многократным попаданием в рискованную ситуацию. Рассмотрим вождение машины. Вероятность попасть в аварию при одной поездке на машине очень невелика. Но что будет с вероятностью аварии, если вы совершаете сотни или тысячи поездок? Согласно правилу «или», она будет равна вероятности аварии при первой,
Давайте рассмотрим аналогичный пример. При применении метода контрацепции, эффективного на 96% из расчета на год, в среднем у четырех женщин из каждых ста, пользующихся этим методом, в течение года наступит беременность. Предполагая, что уровень неудач не зависит от времени, следует ожидать, что при применении этого метода в течение 15 лет забеременеет больше женщин, а при его применении в течение более 15 лет количество беременностей будет еще больше (Shaklee, 1987). При опросе студентов колледжа оказалось, что только 52% студентов понимало, что количество ожидаемых беременностей возрастает со временем, а большинство из них существенно недооценивало число беременностей.
Вероятно, идея, которую я пытаюсь донести до читателя, уже ясна: при определении риска важно понимать, относится ли предлагаемое вам значение вероятности к какой-либо единице времени (например, год), и осознавать, что совокупный риск увеличивается при повторении рискованной ситуации. Создается впечатление непонимания многими того, что совокупные риски выше, чем однократные.
Ожидаемые значения
Какую из следующих двух ставок вы бы сделали, если было бы можно выбрать лишь одну из них?
1. Большая дюжина: игра стоит один доллар. Если, бросив пару игральных костей, вы получите 12 очков, вам вернут ваш доллар плюс еще 24 доллара. Если выпадет любая другая сумма, вы проиграли свой доллар.
2. Счастливая семерка, игра стоит один доллар (так же, как в предыдущем случае). Если, бросив пару игральных костей, вы получите в сумме 7 очков, вам вернут ваш доллар плюс еще б долларов. Если выпадет любая другая сумма, вы проиграли свой доллар.
Теперь выберите либо ставку номер 1, либо ставку номер 2.
Большинство людей выбирает ставку номер 1, считая, что 24 доллара, которые они выиграют, если выпадет 12 оков, в четыре раза больше, чем 6 долларов, которые можно выиграть, если выпадет 7 очков, а денежная величина одинакова для каждой ставки. Давайте проверим, насколько правильны такие рассуждения.
Чтобы выяснить, какая из ставок выгоднее, надо рассчитать вероятность выигрыша и проигрыша в каждом из случаев. Существует формула, которая учитывает все эти значения и дает
ОЗ = (вероятность выигрыша) х (величина выигрыша) + (вероятность проигрыша) х (величина проигрыша).
Давайте вычислим ОЗ для первой ставки. Начнем с расчета вероятности выпадения 12 при броске пары игральных костей. Существует только один способ получить 12: когда на каждой из костей выпадет 6. Вероятность этого события при условии, что кости «честные», равна 1/6
х 1/б = 1/36 = 0,028. (Поскольку нас интересует вероятность выпадения 6ОЗ (1-я ставка) = (вероятность выпадения 12) х (выигрыш) + (вероятность выпадения
ОЗ (1-я ставка) = 0,028 х $24 + 0,972 х (- $1) 03 (1-я ставка) = $0,672 – $0,97 03 (1-я ставка) = – $0,30