Читаем Психология критического мышления полностью

Вы можете также воспользоваться своими знаниями по теории вероятностей для того, чтобы повысить свои шансы на успех в некоторых ситуациях. Возьмем, к примеру, Аарона и Джилл, которые спорили из-за того, кому из них выносить мусор. Их мама согласилась помочь им уладить разногласия, назвав наугад число от одного до 10. Тот из них, чье число окажется ближе к числу, названному мамой, победит в споре. Аарон был первым и назвал число «три». Какое число должна назвать Джилл, чтобы иметь максимальные шансы на победу? Прекратите чтение и подумайте, какое число ей следует выбрать.

Джилл лучше всего выбрать число «четыре». Если мама назовет любое число, большее трех, то эта стратегия принесет Джилл победу. Таким образом, она может увеличить вероятность выигрыша в ситуации, которая кажется зависящей только от случая.

Субъективная вероятность

Обычно мы не имеем дела с известными или объективными вероятностями, такими как вероятность дождя в какой-либо день или вероятность возникновения болезней сердца при приеме противозачаточных таблеток. Тем не менее, мы ежедневно принимаем решения на основе собственных оценок вероятности различных событий. Субъективной вероятностью называют личные оценки вероятности событий. Такой термин введен для отличия наших оценок от объективной вероятности, под которой понимают суждение о вероятности события, рассчитанное математическим путем на основе известных данных о частоте его появления. Психологи, исследовавшие субъективные вероятности, обнаружили, что человеческие суждения о вероятностях часто бывают ошибочными, но, тем не менее мы руководствуемся ими при принятии решений во многих ситуациях.


Ошибка игрока


На ярмарках, в казино, в парках и в телевизионных шоу пользуется популярностью игра под названием «Колесо Фортуны». Имеется большое колесо, которое можно вращать. Колесо разделено на множество пронумерованных секторов, как колесо рулетки. Резиновый указатель показывает, какой номер выиграл.

Предположим, что ваша подруга Ванда решила подойти к «Колесу Фортуны» с научной точки зрения. Она села рядом с колесом и стала записывать все выигравшие номера. Допустим, что Ванда записала следующий набор чисел: 3, 6, 10, 19, 18, 4, 1, 7,7,5,20, 17,2, 14, 19, 13,8, 11, 13, 16, 12, 15, 19, 3, 8. После тщательного изучения этих чисел она заявила, что при последних 25 запусках колеса ни разу не выпадало число «девять»; она собирается поставить крупную сумму на «девять», так как теперь вероятность появления этого числа значительно возросла. Согласны ли вы с тем, что это надежная ставка? Если вы ответили «да», то совершили ошибку, которая очень часто встречается при изучении законов вероятности. «Колесо Фортуны» не обладает памятью и «не помнит», какие номера только что выиграли. Если колесо сконструировано таким образом, что выигрыш любого номера имеет одинаковую вероятность, то выпадение «девятки» равновероятно при каждом запуске колесе, независимо от того, часто или редко это число выпадало в прошлом. Люди верят, что случайные процессы, такие как вращение колеса, должны самокорректироваться таким образом, что если событие какое-то время не происходило, то вероятность его появления увеличивается. Такие неверные представления носят название ошибки игрока.

Ошибку игрока можно обнаружить во многих ситуациях. Рассмотрим пример из области спорта. Иногда считают, что если игроку в бейсболе долго не удается ударить, то повышается вероятность того, что к нему придет мяч, потому что ему «полагается» удар. Один мой друг, большой любитель спорта, рассказал мне следующую историю о Доне Саттоне, бывшем подающем игроке из команды «Доджерс». В один из сезонов Саттон проиграл очень много пробежек. Он предсказывал, что за этим «спадом» в игре последует «коррекция», и он закончит сезон с обычным для себя средним результатом. К сожалению, случайные факторы не подвергаются коррекции, и, начав сезон плохо, он закончил его с результатом ниже своего обычного среднего уровня. Часто люди продолжают совершать «ошибку игрока» даже после того, как им объяснили, в чем она заключается. Студенты рассказывали мне, что хотя на интеллектуальном уровне они могут понять, что совершают «ошибку игрока», на интуитивном уровне они «нутром» чувствуют, что «так и должно быть». Для понимания законов вероятностей нередко нужно отказаться от своих интуитивных предчувствий, поскольку они часто бывают неверными. Давайте рассмотрим другой пример.

Перейти на страницу:

Похожие книги

Медвежатник
Медвежатник

Алая роза и записка с пожеланием удачного сыска — вот и все, что извлекают из очередного взломанного сейфа московские сыщики. Медвежатник дерзок, изобретателен и неуловим. Генерал Аристов — сам сыщик от бога — пустил по его следу своих лучших агентов. Но взломщик легко уходит из хитроумных ловушек и продолжает «щелкать» сейфы как орешки. Наконец удача улабнулась сыщикам: арестована и помещена в тюрьму возлюбленная и сообщница медвежатника. Генерал понимает, что в конце концов тюрьма — это огромный сейф. Вот здесь и будут ждать взломщика его люди.

Евгений Евгеньевич Сухов , Евгений Николаевич Кукаркин , Евгений Сухов , Елена Михайловна Шевченко , Мария Станиславовна Пастухова , Николай Николаевич Шпанов

Приключения / Боевик / Детективы / Классический детектив / Криминальный детектив / История / Боевики