Читаем Психология критического мышления полностью

Доля добившихся успеха с кудрявыми волосами / Общая доля людей с кудрявыми волосами = 0,03 / (0,03 + 0,48) = 0,06

Таким образом, шансы Хосе на успех на 50 % выше (6 % против 3 %), чем у любого неизвестного, желающего стать артистом, но все равно они очень низкие. Наличие информации о том, что он обладает некоторыми качествами, связанными с успехом, привело к некоторому увеличению вероятности его успеха по сравнению с базовым уровнем, но это увеличение очень незначительно.

Возможно, вам покажется проще следить за логикой этих расчетов, если вы сведете всю информацию в таблицу:


Вы не удивлены, что его шансы на успех оказались столь низкими, несмотря на то, что последующая или вторичная вероятность имела такое высокое значение (75 %)? Большинство людей оказывается удивлено таким результатом. Столь слабые шансы Хосе стать артистом объясняются тем, что в целом на этом поприще добивается успеха очень небольшое количество желающих. Полученное Хосе значение вероятности было близко к априорному, или базовому, уровню успеха для всех начинающих артистов. Поскольку в целом очень немногим артистам удается добиться успеха, Хосе, как и любой другой будущий артист, имеет низкие шансы на успех. Исследования показали, что вообще большинство людей склонно к переоценке шансов на успех при низких базовых уровнях и к их недооценке при высоких базовых уровнях. В предыдущем примере, касавшемся Эдит, у нас была лишь информация о базовом уровне, на которой основывался процесс прогнозирования. В этом примере у нас есть информация о Хосе, которая позволила нам предсказать его шансы на успех, превышающие базовый уровень, хотя из-за общей низкой доли успеха кандидатов в актеры в целом это повышение было незначительным.

Тем читателям, которые предпочитают мыслить пространственными категориями, я предлагаю представить себе большую группу людей, 4 % из которых являются добившимися успеха артистами, а 96 % — не являются таковыми. Эта группа изображена на рис. 7.5. Четверо из 100 нарисованных человечков улыбаются — так изображены добившиеся успеха актеры. Если у вас нет другой информации для прогнозирования успеха Хосе, то вам придется воспользоваться этим базовым уровнем и предсказать ему 4 % шансов на успех.


Рис. 7.5. Наглядное изображение 4 %-го уровня успеха. Заметьте, что 4 % лиц улыбаются.

Теперь давайте учтем дополнительную информацию: 75 % тех, кто добился успеха, имеют кудрявые волосы, а из тех, кто потерпел неудачу, кудрявыми волосами обладают лишь 50 %. Эта информация сочетается с информацией о базовом уровне. Результат изображен на рис. 7.6, где добившимся успеха и неудачникам пририсованы кудрявые волосы. Из четырех улыбающихся человечков трое (75 %) обладают кудрявыми волосами, а из 96 хмурых человечков кудрявые волосы у 48 (50 %).

Анализируя эти цифры, легко заметить, что наши математические действия заключались в том, чтобы определить долю улыбающихся человечков с кудрявыми волосами по отношению ко всем человечкам с кудрявыми волосами, а затем использовать то, что мы знаем о Хосе, для предсказания его шансов на успех. Графически это доля (или часть), которую составляют три улыбающихся кудрявых человечка по отношению к оставшемуся 51 кудрявому человечку:

3/51=0,06

Обобщая; получим следующую схему для расчета вероятности исхода при условии, что у вас имеется информация, касающаяся этой вероятности.

1. Нарисуйте полную древовидную диаграмму, указав информацию о базовом уровне (например, успеха или неудачи), в первой группе узлов. Вторичной информацией воспользуйтесь при изображении второй группы узлов

2. Составьте таблицу, где все различные сочетания базовой и вторичной информации представлены в виде строк.

3. Перемножьте вероятности вдоль каждой из ветвей диаграммы и запишите результаты в строках таблицы.

4. Составьте дробь, в которой значение вероятности интересующей вас ветви (например, успех при наличии кудрявых волос) будет числителем, а сумма этого значения и значения вероятности из другой ветви, содержащей то же условие (например, неудача при наличии кудрявых волос), будет знаменателем.

5. Проверьте ответ. Имеет ли он смысл? Следует ли ожидать, как в приведенном примере, что вероятность успеха должна быть выше базового уровня, потому что у нас имеется информация, которая связана с успехом? (Если бы мы знали, что Хосе обладает некоторым качеством, которое связано с неудачей, то мы бы предсказали, что его шансы на успех будут ниже базового уровня, но при изначально низком базовом уровне они уменьшатся ненамного.)

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже