Читаем Психология критического мышления полностью

Начальные вероятности, существующие a priori, называют базовым уровнем. В этой задаче первое препятствие, которое надо преодолеть Чарли, — это уговорить Луизу пойти с ним в кино. Вероятность этого события 10 %. Эту цифру, т. е. базовый уровень, важно обдумать. Десять процентов — довольно низкое значение, поэтому, скорее всего, она с ним не пойдет. Он хочет знать вероятность совместного появления двух случайных событий — она идет с ним в кино и она его целует. Перед тем как приступить к решению этой задачи, оцените приблизительно величину ответа, который вы ожидаете получить. Как вы думаете, она будет больше 95 %, между 95 % и 10 % или меньше 10 %?

Для решения этой задачи мы нарисуем древовидную диаграмму, на которой изобразим все возможные исходы и их вероятности. Конечно, маловероятно, чтобы Чарли или любой другой юноша, желающий стать Ромео, стал бы на самом деле рассчитывать вероятность этого решающего события, но на этом примере можно продемонстрировать сочетание вероятностей. Может быть, Чарли решит, что вероятность добиться поцелуя у Луизы столь мала, что лучше выбрать Брунгильду, которая с большей вероятностью примет его приглашение на свидание и уступит его любовным чарам. Кроме того, любой, кто в действительности оценивал вероятностные величины, касающиеся любви, может также захотеть точнее оценивать вероятность совместного появления двух или нескольких событий.

Наша диаграмма сначала имеет только две ветви — Луиза принимает приглашение и Луиза отказывается. От узла «Луиза соглашается» начинается следующее разветвление, указывающее, получит Чарли поцелуй или нет. Каждая ветвь должна быть помечена соответствующими значениями вероятностей. Конечно, если Луиза не примет приглашение, то Чарли совершенно точно не получит поцелуя. Следовательно, ветвь, исходящая из узла «Луиза отказывается», будет помечена значением вероятности 1,00 события «Чарли не поцелуют».




Согласно правилу «и» для нахождения вероятности двух (или нескольких) событий, вероятность того, что на прощание Луиза поцелует Чарли, равна: 0,10 x 0,95 = 0,095.

Вы не удивлены, что объективная вероятность оказалась меньше, чем низкий базовый уровень (10 %), и значительно меньше, чем более высокий вторичный или последующий уровень (95 %)? Многих людей это удивляет. Надеюсь, что вы помните, что любой ответ, превышающий 10 %, был бы признаком ошибки конъюнкции. Как было сказано в разделе об ошибках конъюнкции, вероятность совместного появления двух случайных событий (Луиза соглашается и целует Чарли) должна быть меньше, чем вероятности появления каждого из этих событий по отдельности. Большинство людей игнорирует низкий базовый уровень вероятности (или недооценивает его влияние) и дает оценку ответа, лежащую ближе к более высокому уровню вторичной вероятности. В целом люди склонны переоценивать вероятность совместного появления двух или нескольких случайных событий. Ошибки такого типа называются игнорированием базового уровня.


Принятие вероятностных решений

Большая часть принимаемых нами в жизни важных решений связана с вероятностями. Хотя более всестороннее обсуждение принятия решений будет проводиться в главе 8, давайте рассмотрим применение древовидных диаграмм в процессе принятия решений.

Эдит пытается выбрать для себя специализацию в колледже. Она учится в университете, где для специализации по каждому из предметов надо сдавать отдельные вступительные экзамены. Она серьезно думает о том, чтобы стать бухгалтером. Она знает, что на отделение бухгалтерии принимают только 25 % из желающих туда поступить. Семьдесят процентов поступивших оканчивают курс, и 90 % окончивших успешно сдают государственные экзамены на звание бухгалтера и становятся бухгалтерами. Эдит хотела бы узнать, каковы ее шансы стать бухгалтером, если она выберет эту специализацию.

Чтобы ответить на ее вопрос, нарисуем древовидную диаграмму, ветви которой будут указывать «путь» к успешному овладению профессией бухгалтера.




Из приведенной выше диаграммы вы видите, что вероятность успешно овладеть профессией бухгалтера равна 0,25 х 0,70 х 0,90, т. е. 0,158. Получив такой результат, Эдит должна обдумать другие варианты. Например, она может попробовать поступать сразу на отделения бухгалтерии и педагогики. Она может снова подсчитать свои шансы на успех по одной из этих профессий, по обеим сразу (если такой вариант для нее возможен) или вероятность неудачи и там, и там.

В этом примере предполагается, что у нас нет никакой дополнительной информации, на основе которой можно оценивать шансы Эдит на успех. Предположим теперь, что нам известно, что у Эдит прекрасные способности к математике. Приведет ли наличие такого рода информации к изменению соответствующих вероятностей? Повысится ли вероятность того, что Эдит будет принята, окончит курс и успешно овладеет профессией, требующей знания математики? Интуитивно хочется ответить «да». Давайте на следующем примере рассмотрим, как изменится задача вычисления вероятности успеха, если учитывать дополнительную информацию.


Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже