Задача о кооперативе по уходу за детьми продемонстрировала, что существует несколько способов представления исходной информации. Попробуйте сами предложить различные наглядные представления задач, которые встретятся вам в этой главе. Правильное представление задачи содержит всю существенную информацию, которая представлена так, что может быть легко понята и усвоена. Кроме того, правильное представление подсказывает путь к решению задачи.
Попытайтесь построить иерархическое дерево
Если задача, над которой вы работаете, слишком сложна и каждый возможный путь решения разветвляется на дополнительные пути, то следует обратиться к помощи иерархического дерева, или древовидной диаграммы.
Вот, например, классическая задача, впервые предложенная Дункером (Dun-cker, 1945). Хотя предлагаемая в ней проблема является медицинской, никаких специальных знаний для ее решения не потребуется.
У пациента неоперабельная опухоль в желудке. Задача состоит в том, чтобы придумать способ избавления от этой опухоли с помощью рентгеновских лучей, при котором не будут повреждены здоровые ткани, окружающие опухоль со всех сторон.
Остановитесь на несколько минут и подумайте, какой путь вы выбрали бы для решения этой задачи.
Большинство людей, занятых решением задачи Дункера (Duncker, 1945), продвигались к цели в несколько этапов. Хотя были опробованы различные решения, лучшим из них оказалось применение нескольких слабых лучей, каждый из которых проникал в тело снаружи со своей, отличной от других позиции — при этом все лучи фокусировались и собирались воедино в месте расположения опухоли. Таким образом, лучи слабой интенсивности не наносят вреда здоровым тканям, а опухоль при этом подвергается интенсивному лучевому воздействию. Такой подход пришел в голову после перебора различных способов решений, которые подразумевали резкий рост интенсивности лучей в районе расположения опухоли.
Одна из предпринятых попыток поиска путей решения задачи с помощью иерархического дерева проиллюстрирована на рис. 9.8. Заметьте, что цель обязательно располагается в вершине дерева. Общие стратегии перечисляются одним уровнем ниже цели, наиболее характерные пути, определяющие каждую стратегию, — еще одним уровнем ниже.
В частности, древовидные диаграммы оказываются весьма полезными, если исходная информация сама по себе имеет иерархическую структуру. Например, классификация всех живых организмов выстроена биологами в иерархическую схему. Если вы спросите ребенка, является ли пчела животным, он, вероятно ответит: «Нет, поскольку это насекомое». Этот вопрос можно ему разъяснить, если нарисовать биологическое классификационное дерево, пример которого приведен на рис. 9.9.
Другой пример использования древовидных диаграмм для решения задач — это применение хорошо известного генеалогического дерева. Занимающиеся вопросами недвижимости юристы, которые часто сталкиваются с запутанным клубком родственных связей, должны уметь определять степень родства всех членов семьи, чтобы контролировать выполнение условий завещаний и уплату налогов на имущество.
Рис. 9.8. Диаграмма в виде иерархического дерева, иллюстрирующая одну из попыток решения сформулированной Дункером задачи рентгеновского облучения (Duncker, 1945).
Рис. 9.9. Диаграмма в виде иерархического дерева, которая поможет ответить на вопрос:
«Являются ли пчелы животными?»