С тех пор как Бернулли впервые поставил эту проблему, она была названа «Санкт- Петербургским парадоксом». Парадокс потому, что ожидаемая ценность игры (или количество денег, которые вам придется заплатить до первого выпадения решки) огромна и очень немногие готовы заплатить крупную сумму денег за участие в ней. Чтобы проверить, действительно ли возможная плата бесконечно велика, мы можем подсчитать ожидаемую ценность игры Бернулли, умножив плату за каждый возможный исход игры на шансы этого исхода*. Шансы выпадения монетки решкой после первого подбрасывания (которое приведет к уплате 2 долларов) равны 1/2; шансы, что после одного выпадения орла выпадет решка (плата 4 доллара) равны 1/4; шансы, что решка последует за двумя орлами (плата 8 долларов)
* В этом разделе книги больше математики и теории, чем в других ее частях. Разумеется, некоторые читатели могут счесть этот материал более сложным, чем темы, обсуждавшиеся в предыдущих разделах. Если вы не знакомы с терминологией, не расстраивайтесь: основные пункты будут понятны вам без всякого знания математики, а в последующих разделах ее вообще очень-очень мало.
108
равны 1/8; короче, ожидаемая ценность (ОЦ) составит (где
ОЩза игру) = (V2)($2) + (V4)( $4) + (V8)( $8) + ... + (7
= $1 + $1 + $1 + $1 + ... + $1 = бесконечная сумма денег
Вопрос состоит в том, почему люди не собираются платить больше, чем несколько долларов, чтобы сыграть в игру с вероятным крупным выигрышем.
Спустя 25 лет, как Николас Бернулли поставил эту проблему, его младший кузен математик Дэниел Бернулли пришел к решению, которое включало в себя два первых положения современной ему теории принятия решений. Дэниел Бернулли (1738; 1954) обосновал это тем, что общая стоимость или «выгода» игры (в деньгах) расходится с итоговым выигрышем (или с уже имеющейся у игрока суммой). Например, он писал (с. 24): «Сумма в тысячу дукатов более существенна для бедняка, чем для богача, но оба получат одно и то же». Бернулли говорил, что количество денег может быть представлено следующим образом:
я
Богатство
Учитывая, что количество добавляющихся денег расходится с богатством, Бернулли смог показать, что в конечном счете выгода от Санкт-Петербургской игры не бесконечна. (109:()
Теория ожидаемой выгоды
Несмотря на то что ученые продолжали дебаты о том, действительно ли Дэниел Бернулли разрешил Санкт- Петербургский парадокс (например, Лопес, 1981; Уэйрич, 1984), его объяснение социальной зависимости выгоды заложило основы для более поздних теорий о поведении в ситуации выбора. Наиболее известный пример такой теории, известной сейчас как «теория ожидаемой выгоды», был опубликован Джоном фон Ньюманом и Оскаром Моргенштерном в 1947 году. Фон Ньюман и Моргенштерн считали теорию ожидаемой выгоды «нормативной» теорией поведения. То есть классическая теория выгоды не объясняла, как люди ведут себя
Одной из основных целей такой теории было оснащение определенным набором предположений или аксиом, определяющих рациональное принятие решений. Выведенные фон Ньюманом и Моргенштерном аксиомы позволили исследователям составить математический прогноз поведения реальных субъектов теории ожидаемой выгоды. Когда исследователи фиксировали нарушение аксиомы, они пересматривали теорию и делали новые прогнозы. Таким образом, исследования принятия решений циркулировали между теорией и практикой.
Каковы же аксиомы рационального принятия решений? Большинство формулировок теории ожидаемой выгоды основаны на положениях, изложенных в следующих шести принципах:
•
•