Читаем Психология процесса изобретения в математике полностью

Представим себе, что мы бросили перед собой «материальную точку» (т.е. крохотное тело, например, очень маленький шарик), которая будет продолжать двигаться благодаря своей начальной скорости и своему весу. Здравый смысл говорит нам, что это движение будет происходить в вертикальной плоскости, которая проходит через начальное направление броска. В этом случае почти несомненно, что подсознание использует «принцип достаточного основания», так как нет никаких оснований для того, чтобы точка в своём движении отклонилась скорее вправо, чем влево от этой плоскости.

Математическое доказательство, как оно классически излагается в курсах теоретической механики, основано на совершенно ином принципе и использует несколько теорем дифференциального и интегрального исчисления. Надо, однако, заметить, что доказательство, которое нам даёт «здравый смысл», можно превратить в совершенно строгое, используя общую теорему (также относящуюся к интегральному исчислению), которая гласит, что в условиях, изложенных выше (при заданных величине и направлении скорости), движение определено однозначно. Эта теорема может в свою очередь быть строго доказана, но это доказательство приводится лишь в более строгих курсах интегрального исчисления, так что в обычном обучении способ, подсказанный здравым смыслом, действительно кажется менее элементарным, чем другой.

Рассмотрим теперь два геометрических примера. Если я хочу непрерывным движением точки описать в плоскости кривую, то здравый смысл подсказывает, что во всех её точках (кроме, может быть, нескольких исключительных точек) кривая будет иметь касательную (другими словами, в каждый момент движение обязательно происходит во вполне определённом направлении). Мы не знаем, как здравый смысл — т.е. наше бессознательное — приходит к такому выводу; может быть, благодаря опыту, т.е. вспоминая кривые, которые мы привыкли видеть; или, как это предполагает Ф. Клейн, смешивая геометрические кривые, которые не имеют толщины, с кривыми, которые мы реально можем провести и которые всегда имеют некоторую толщину. В действительности вывод ошибочен: математики умеют строить непрерывные кривые, которые нигде не имеют касательной.

В качестве второго примера рассмотрим замкнутую плоскую кривую, которая не имеет «двойных точек», т.е. нигде не пересекается сама с собой. Для здравого смысла очевидно, что такая кривая, какова бы ни была её форма, делит плоскость либо на две различные области, либо более чем на две. Точно не известно, как здравый смысл приходит к такому выводу, и вероятно, что здесь снова налицо вмешательство эмпиризма. На этот раз заключение (теорема Жордана) правильно, но, несмотря на его очевидность для нашего здравого смысла, его доказательство очень трудное.

С помощью таких примеров можно понять, что, по крайней мере для некоторого класса вопросов, связанных с основами 103, невозможно с уверенностью полагаться на нашу обычную пространственную интуицию: так же, как геометрические свойства могут быть сведены к свойствам аналитическим благодаря аналитической геометрии, рассуждения всегда должны быть полностью арифметизованы; или, по крайней мере, необходимо убедиться, что такая арифметизация возможна, даже если она для краткости не проводится. Слова Паскаля «Всё, чего не может геометрия, не можем и мы» заменены современными математиками словами «Всё, чего не может арифметика, не можем и мы».

Например, доказательство теоремы Жордана, сформулированной выше, является удовлетворительным лишь тогда, когда оно полностью арифметизовано 104.

Вторая стадия — изучение математики

После этой стадии здравого смысла приходит следующая стадия — научная. Мы видели, что она характеризуется наличием тройной операции: проверки результата, его «завершения» и особенно его подготовки к использованию, что требует формулировки результата-эстафеты. Мы видели, что это существенно, во-первых, для того, чтобы иметь уверенность в приобретённых таким образом знаниях и для того, чтобы иметь возможность их плодотворно использовать.

Эти особенности помогут нам понять, что происходит, с точки зрения психологии, при переходе от первой стадии ко второй; другими словами, понять то, что происходит при изучении математики.

Известно, до какой степени обычным делом здесь являются полное непонимание и полный крах. Впрочем, я буду очень краток в этом вопросе, так как он основательно рассмотрен Пуанкаре. Прежде чем его обсуждать, небесполезно заметить, что изучение математики уже входит в тему нашего исследования. Между работой ученика, решающего задачу по алгебре или геометрии, и изобретательской работой разница лишь в уровне, в качестве, так как обе работы аналогичного характера.

Как получается, что столько учеников неспособны к этому виду работы, неспособны понимать математику? Пуанкаре рассмотрел именно этот вопрос 105, и он ярко показал, какова здесь действительная причина, источник которой — тот смысл, который следовало бы придавать слову «понимать».

Перейти на страницу:

Похожие книги

Этика
Этика

«Этика» представляет собой базовый учебник для высших учебных заведений. Структура и подбор тем учебника позволяют преподавателю моделировать общие и специальные курсы по этике (истории этики и моральных учений, моральной философии, нормативной и прикладной этике) сообразно объему учебного времени, профилю учебного заведения и степени подготовленности студентов.Благодаря характеру предлагаемого материала, доступности изложения и прозрачности языка учебник может быть интересен в качестве «книги для чтения» для широкого читателя.Рекомендован Министерством образования РФ в качестве учебника для студентов высших учебных заведений.

Абдусалам Абдулкеримович Гусейнов , Абдусалам Гусейнов , Бенедикт Барух Спиноза , Бенедикт Спиноза , Константин Станиславский , Рубен Грантович Апресян

Философия / Прочее / Учебники и пособия / Учебники / Прочая документальная литература / Зарубежная классика / Образование и наука / Словари и Энциклопедии