Читаем Пуанкаре полностью

Современного читателя топологических работ Пуанкаре поражают удивительная завершенность, законченность, довольно-таки неожиданная для периода младенчества этой науки. Причем законченность не в смысле доскональности и совершенства математических доказательств, а в смысле точности и полноты введенных им понятий и методов. Изложенные в этих статьях идеи в течение всех последующих десятилетий питали топологию своей Живительной силой. Следуя за новаторской мыслью Пуанкаре, многочисленные исследователи развили в математике новое мощное и обширное направление, напоминающее ныне густо ветвящееся дерево. "Величайший представитель классической математики "взорвал изнутри" ее традиции и открыл доступ в нее не только новым методам исследования, но, что, может быть, еще важнее, и новым способам видеть вещи и интересоваться ими", — пишет академик П. С. Александров. Однако в конце XIX века и несколько позже рядом с ослепительным храмом небесной механики новоотстроенное здание никому не известной еще математической дисциплины выглядит совсем не впечатляюще. По сравнению с другими успехами Пуанкаре "Analysis situs" кажется его современникам несравненно более скромным достижением. Даже Эмиль Пикар, хорошо осведомленный о глубинных течениях творческой мысли своего друга, в обзорном докладе 1913 года о его математических работах ни словом не упоминает эти статьи. И только позже, с дистанции прошедших десятилетий, ученые смогли по достоинству оценить всю грандиозность топологических построений Пуанкаре.

Но топология — это всего лишь один из многих полюсов его тяготения в тот период. Научное творчество Пуанкаре движется сразу по нескольким руслам, в нем бьют сразу несколько обособленных потоков. Не исчерпывается оно даже таким громадным и многообразным трудом, как "Новые методы небесной механики". В многолетнюю работу над этим фундаментальным сочинением вторгаются другие научные интересы, никак не связанные с небесной механикой. Весьма занимает его ум, например, одна знаменитая математическая проблема, оказавшаяся довольно крепким орешком для крупнейших математиков. В свое время Лежен-Дирихле и Бернгардт Риман, основываясь на интуитивных соображениях, утверждали, что всегда существует решение краевой задачи для уравнения Лапласа, дифференциального уравнения с частными производными. Простые физические соображения внушали такую мысль, поскольку для соответствующих этой математической задаче реальных примеров непременно должен был наблюдаться какой-то результат. Это утверждение, облеченное в сложную математическую форму, легло в основу принципа Дирихле. Ученые свободно пользовались этим принципом в своих теоретических изысканиях, уверенные в его справедливости.

Так продолжалось до тех пор, пока К. Вейерштрасс, заинтересовавшийся этим вопросом, не подверг эту необоснованную уверенность сокрушительной математической критике. Его выводы повергли математиков в смятение. Весьма важный и широкоупотребительный принцип Дирихле сразу стал камнем преткновения. Строго доказать этот принцип никто не мог, а применять, как и раньше, не утруждая себя его обоснованием, казалось уже неправомерным. Не будь он столь важным и необходимым, от него давно бы отказались, столь велики были трудности, связанные с его доказательством. Но принцип Дирихле с успехом использовался в задачах гидродинамики, в теории упругости, в теории распространения тепла, в теории электричества, в теории ньютоновского притяжения и в других прикладных теориях. Время шло, а решение проблемы не приходило. Математики начали уже терять надежду на спасение столь ценного для них средства исследования. Карл Нейман сетовал на то, что принцип Дирихле, "такой красивый и имеющий такие важные приложения в будущем, навечно исчез из поля зрения".

Пуанкаре приступил к этой труднейшей проблеме в самый разгар своих небесномеханических увлечений. В 1890 году вышел в свет его мемуар, в котором он доказал существование функции, удовлетворяющей условиям задачи Дирихле, то есть доказал возможность ее решения. Добиться успеха помог ему весьма остроумный и оригинальный математический метод, названный автором методом выметания. Так впервые был обоснован принцип Дирихле для довольно широкого класса задач. "Одного этого исследования, независимо от всех других, было бы, на мой взгляд, достаточно, чтобы доставить автору почетную известность", — заявил видный советский математик, академик В. А. Стеклов.

В 1894 и 1896 годах появляются еще два больших мемуара Пуанкаре, посвященных решению дифференциальных уравнений с частными производными. В них автор решает задачи о распределении теплоты в твердом теле, о звуковых частотах, издаваемых вибрирующей мембраной. В них же он применяет расширенный им метод К. Неймана для решения задачи Дирихле. Эти исследования привели его к открытию новых функций, которые называются теперь фундаментальными функциями Пуанкаре.

Перейти на страницу:

Похожие книги

100 мифов о Берии. Вдохновитель репрессий или талантливый организатор? 1917-1941
100 мифов о Берии. Вдохновитель репрессий или талантливый организатор? 1917-1941

Само имя — БЕРИЯ — до сих пор воспринимается в общественном сознании России как особый символ-синоним жестокого, кровавого монстра, только и способного что на самые злодейские преступления. Все убеждены в том, что это был только кровавый палач и злобный интриган, нанесший колоссальный ущерб СССР. Но так ли это? Насколько обоснованна такая, фактически монопольно господствующая в общественном сознании точка зрения? Как сложился столь негативный образ человека, который всю свою сознательную жизнь посвятил созданию и укреплению СССР, результатами деятельности которого Россия пользуется до сих пор?Ответы на эти и многие другие вопросы, связанные с жизнью и деятельностью Лаврентия Павловича Берии, читатели найдут в состоящем из двух книг новом проекте известного историка Арсена Мартиросяна — «100 мифов о Берии».В первой книге охватывается период жизни и деятельности Л.П. Берии с 1917 по 1941 год, во второй книге «От славы к проклятиям» — с 22 июня 1941 года по 26 июня 1953 года.

Арсен Беникович Мартиросян

Биографии и Мемуары / Политика / Образование и наука / Документальное