Лоренцу в этот период тоже потребовалось пересмотреть понятие времени, чтобы раскрыть физический смысл некоторых сторон развиваемой им электродинамики движущихся сред. Но он так и не отважился сразу и решительно порвать со столь привычным всеобщим временем классической физики. Первым его шагом было введение особого понятия «местного» времени, которое использовалось им фактически как реальное время для описания процесса распространения световой волны в движущейся среде. «Местным» оно называлось по той причине, что в каждой точке движущейся системы было выбрано свое, характерное для данного места начало его отсчета.
Сам Лоренц был далек от того, чтобы это «местное» время признать равноправным со временем неподвижной системы, которое он называл всеобщим. Но это лишь свидетельствовало об отсутствии у него понимания подлинного значения сделанного им шага. Для согласования своей теории с результатами опыта Физо ему пришлось отказаться от всеобщего времени, связанного с классическими преобразованиями Галилея, и использовать «местное» время как реальное физическое время. Таким образом, даваемая Лоренцем оценка «местного» времени как некоторой вспомогательной величины не соответствовала фактическому его употреблению.[48]
В этой ситуации особенно важное значение приобретало то простое разъяснение физического смысла «местного» времени, которое дал Пуанкаре. В своей статье "Теория Лоренца и принцип равенства действия и противодействия", опубликованной в 1900 году в одном из голландских журналов, посвященном двадцатипятилетию научной деятельности Лоренца, он определяет «местное» время как соответствующее показаниям часов, синхронизованных световым сигналом. Это означало, что оно является таким же реальным физическим временем в движущейся системе, каким считалось отличное от него время неподвижной системы.
Неожиданное решение
И «местное» время, и гипотеза о сокращении длин твердых тел, движущихся в эфире, все это были неосознанные отступления от общепринятых методов классической физики, с которыми сам Лоренц никак не хотел расстаться. По его представлениям, любые электромагнитные явления происходят всегда в неподвижном мировом эфире в строгом соответствии с уравнениями Максвелла. Это означало, что при движении какой-либо системы относительно эфира меняются лишь условия наблюдения процессов, разыгрывающихся всегда на одной и той же сцене по одному и тому же сценарию, задаваемому уравнениями Максвелла. Чтобы выяснить, к каким последствиям приводят эти изменения условий наблюдения, нужно было перейти от пространственно-временных координат системы, связанной с эфиром, к таким же координатам движущейся системы отсчета.
Согласно представлениям классической физики математические соотношения между координатами двух систем отсчета предписаны очевидными соображениями и выражаются преобразованиями, принятыми еще Галилеем. Эти преобразования и были использованы Лоренцем для описания электромагнитных процессов в движущейся системе координат. Полученные им результаты, однако, расходились с опытными. Но, даже столкнувшись с таким противоречием, он проявляет удивительную верность уравнениям Максвелла и своей основной идее о неподвижном эфире. Стремясь согласовать свою теорию с опытом, Лоренц выдвигает те самые дополнительные гипотезы, которые, не затрагивая уравнений электродинамики, вносят необходимые изменения в описание процессов в движущейся системе. Фактически же «местное» время и гипотеза о сокращении длин означали изменение преобразований пространственно-временных координат, отход от обычных преобразований Галилея.
Еще в работе Лоренца 1895 года присутствовали новые преобразования координат, которые приближенно отвечали этим принятым им двум гипотезам. Несколько позже, в работе 1899 года, Лоренц получает уже точные выражения для таких преобразований. Он преподносит их как некие специальные преобразования пространственно-временных координат, применение которых обеспечивает неизменность, инвариантность уравнений Максвелла при переходе от системы эфира к движущейся системе. Правда, голландский физик не дал строгого и общего доказательства этого утверждения. Тем не менее, как было потом доказано Пуанкаре, полученные Лоренцем преобразования действительно обладают таким ценным свойством, отвечающим требованию принципа относительности. Сам Лоренц, проявляя свойственную ему непоследовательность, рассматривал полученные преобразования лишь как вспомогательный математический прием.