Читаем Пуанкаре полностью

Математики уже знали, что поведение кривой, определяемой дифференциальным уравнением, будет различным в зависимости от того, рассматривается ли она в своей обычной, ничем не примечательной точке или в какой-то особой точке, в которой возможны некоторые аномалии. Через обычные точки кривая проходит плавно и монотонно, словно рельсовый путь. Особая точка уподобляется узловой станции, стрелке или тупику. Чтобы ознакомиться с железнодорожным маршрутом, достаточно простого перечисления встречающихся на пути следования станций и отходящих от основной магистрали веток. Точно так же, чтобы представить себе всю кривую в целом, нужно знать, как расположены ее особые точки и что происходит в этих точках с кривой. Тогда легко проследить весь непрерывный путь от одной особой точки к другой. Изучить кривую по определяющему ее дифференциальному уравнению означало прежде всего научиться извлекать из этого уравнения всю информацию об особых точках. С решения именно этой задачи и начал свои исследования Пуанкаре.

Еще в докторской диссертации и в одной из статей 1880 года он уделяет внимание особым точкам. Но только сейчас, в Париже, Пуанкаре по-настоящему глубоко исследует этот вопрос в серии работ, озаглавленных: "О кривых, определяемых дифференциальными уравнениями". Первый и второй мемуары вышли в декабре 1881 года и в августе 1882 года. В этих работах были заложены идеи и методы, составившие содержание нового раздела математики. Название ему дал сам Пуанкаре: качественные методы теории дифференциальных уравнений. До него этот кардинально новый подход никем даже не затрагивался.

Проанализировав множество особых точек различного рода, он приходит к заключению, что все они сводятся к четырем основным видам: седло, фокус, центр и узел. Это была первая классификация и первые названия, которые сохранились до наших дней. Различаются эти особые точки тем, как ведут себя кривые в их ближайшей окрестности. В точке, которая получила название «седло», две кривые, имеющие вид сломанных под углом прямых, соприкасаются как раз вершинами углов. Остальные кривые через эту точку не проходят, а, словно струи воды, плавно загибаются в углах, ограниченных прямыми линиями, как стенками. Зато в «узле» сходятся сразу все кривые, попадающие в его окрестность. На «фокус» кривая наматывается подобно спирали или же, наоборот, раскручивающейся спиралью выбегает из этой точки. От «центра» кривые расходятся изолированными замкнутыми кольцами, как круги на воде. "Я изучил затем распределение этих особых точек в плоскости, — пишет Пуанкаре о следующем этапе своей работы. — Я показал при этом, что они всегда существуют (на конечном или бесконечном расстоянии) и что всегда выполняется простое соотношение между числом седел, фокусов и центров…" Всевозможные варианты поведения кривых, представляющих решения дифференциальных уравнений, могли теперь быть проиграны без особых затруднений: либо кривые замкнутыми линиями охватывают центр, либо они неограниченными спиралями навиваются на фокус, либо бесконечно удаляющаяся в одну сторону кривая упирается другим своим концом в узел, либо же кривая, исходящая из узла или фокуса, заканчивается в другом узле или фокусе. Была еще одна возможность, для описания которой Пуанкаре пришлось ввести новое понятие — предельный цикл.

Так была названа им особая замкнутая кривая, представляющая одно из решений дифференциального уравнения. Все другие кривые, определяемые этим уравнением, проходя вблизи предельного цикла, наматываются на него либо изнутри, либо снаружи. Неограниченно приближаясь к нему, они тем не менее никогда его не пересекают и даже не соприкасаются с этой недосягаемой для них кривой. Новое понятие оказалось не менее важным, чем понятие особой точки. Если известен предельный цикл, можно быть твердо уверенным, что кривая навсегда останется либо внутри его, либо вне, поскольку перейти эту границу она не может, как бы близко к ней ни подходила, ото значит, что можно указать пределы перемещения тела — либо верхние, либо нижние. Доказав, что число предельных циклов всегда конечно, не считая некоторых исключительных случаев, Пуанкаре разработал способы их обнаружения и дал общий метод для определения их количества.

Перейти на страницу:

Похожие книги

100 мифов о Берии. Вдохновитель репрессий или талантливый организатор? 1917-1941
100 мифов о Берии. Вдохновитель репрессий или талантливый организатор? 1917-1941

Само имя — БЕРИЯ — до сих пор воспринимается в общественном сознании России как особый символ-синоним жестокого, кровавого монстра, только и способного что на самые злодейские преступления. Все убеждены в том, что это был только кровавый палач и злобный интриган, нанесший колоссальный ущерб СССР. Но так ли это? Насколько обоснованна такая, фактически монопольно господствующая в общественном сознании точка зрения? Как сложился столь негативный образ человека, который всю свою сознательную жизнь посвятил созданию и укреплению СССР, результатами деятельности которого Россия пользуется до сих пор?Ответы на эти и многие другие вопросы, связанные с жизнью и деятельностью Лаврентия Павловича Берии, читатели найдут в состоящем из двух книг новом проекте известного историка Арсена Мартиросяна — «100 мифов о Берии».В первой книге охватывается период жизни и деятельности Л.П. Берии с 1917 по 1941 год, во второй книге «От славы к проклятиям» — с 22 июня 1941 года по 26 июня 1953 года.

Арсен Беникович Мартиросян

Биографии и Мемуары / Политика / Образование и наука / Документальное