Некоторые динамические системы демонстрируют поведение, которое кажется стихийным, но это справедливо не всегда. Например, камень, брошенный ребенком, описывает параболическую траекторию, и его движение представляет собой динамическую систему, которая при этом полностью предсказуема. Даже динамические системы высокой сложности могут порождать очень простые модели. В целом хаотичное или нехаотичное поведение системы задано как законами, управляющими ею, так и начальными условиями движения.
Теория хаоса изучает динамические системы, поведение которых непредсказуемо, причем хаотичное поведение могут демонстрировать даже простые системы.
Рассмотрим функцию под названием логистическое отображение, которое описывает движение только в одном измерении, с единственной координатой
Математическая формула для его нахождения следующая:
где
Предположим, что мы берем
Следуя тому же правилу,
И так далее.
Оказывается, что если выбирать значения
Изучение хаотических систем стало возможным благодаря прогрессу в вычислениях в последние десятилетия. Компьютерное моделирование позволило классифицировать все траектории системы и, следовательно, сделать качественный прогноз их поведения. Возможно, если бы в конце XIX века уже существовали компьютеры, изучение газовой динамики пошло бы по пути, сильно отличающемуся от того, который привел к развитию статистической механики. Однако ограниченные вычислительные возможности заставили физиков и математиков искать другие способы прогнозирования для объектов высокой сложности.
Изучение динамических систем — крайне актуальная область, необходимая для решения множества проблем, начиная от создания искусственного интеллекта до решения биологических задач. Идея состоит в том, чтобы смоделировать систему, развитие которой в абстрактном пространстве задано рядом правил. Затем изучаются различные возможные траектории развития и выводятся их общие характеристики.
Любой газ можно считать динамической системой. Его положение в фазовом пространстве определяется положениями и импульсами всех его частиц, а изменение его состояния определяется уравнениями Гамильтона. Теория динамических систем может быть применена для вывода некоторых общих характеристик поведения газов, к которым затем можно будет применить другие инструменты, такие как вероятность или статистика. При изучении газовой динамики нужно различать два режима газа: в состоянии равновесия или вне него. Анализировать газ в состоянии равновесия, то есть газ, состояние которого не меняется, относительно просто, и эта задача была решена
Помимо изучения газов, динамические системы имеют очень широкое применение. Так, их можно использовать для описания заражения инфекционными заболеваниями. Используя координаты зараженной области в качестве точки фазового пространства и характеристики изучаемого вируса в качестве правил изменения, можно смоделировать следствия и, соответственно, предусмотреть некоторые профилактические меры. Различные траектории динамической системы показывают различные варианты развития заболеваемости, что позволяет выработать оптимальную стратегию преодоления инфекции.