Читаем Путешествие от частицы до Вселенной. Математика газовой динамики полностью

Обратим внимание на точки границы нашей области в фазовом пространстве. Эти точки представляют собой границу нашей системы: если бы наш газ находился вне их, мы могли бы замерить изменение одной из макроскопических переменных, которые мы контролируем. Теперь возьмем точку из середины, как показано на рисунке.



Возможно ли развитие системы таким образом, чтобы эта точка оказалась вне нашей области?

Предположим, что точка внутри области может двигаться по траектории, которая вывела ее за границу. Это означало бы, что в какой-то момент траектория, пройденная точкой на границе, и наша система пересеклись бы. Но в предыдущей главе мы видели, что это невозможно: классическая физика основана на идее о том, что в каждый момент времени Вселенная меняется по определенным законам, и эти законы не предполагают больше одного варианта развития событий, иначе это привело бы к непредсказуемости мира. Значит, две одинаковые точки должны двигаться сходным образом. Следовательно, точка внутри никогда не сможет пересечь контур, и все точки внутри области останутся в ней. А поскольку никакая внешняя система не может войти в область и никакая внутренняя не может выйти, число систем нашей области должно оставаться постоянным.

Из этого рассуждения есть и другое следствие, которое автоматически применяется при рассмотрении газа в состоянии равновесия: область, которую занимает множество наших систем в пространстве, никогда не меняется. Пользуясь уравнениями Гамильтона, можно доказать, что это справедливо для любой совокупности, независимо от того, находится ли она в равновесии. То есть:

— количество систем в совокупности всегда одинаково;

— область, которую занимает совокупность в фазовом пространстве, всегда одинакова.

Если рассматривать точки нашей совокупности, как будто это частицы, движущиеся по пространству из многих измерений, это означает, что они ведут себя как несжимаемый флюид: траектории никогда не пересекаются, и невозможно сжать область, которую занимает одна из них. Этот вывод известен как теорема Лиувилля.

Теперь у нас есть почти все необходимые элементы, чтобы спрогнозировать распределение скоростей в газе. С одной стороны, мы знаем, что область, которую занимает наша совокупность в фазовом пространстве, не изменится; с другой стороны, если газ находится внутри границы, он останется внутри нее.

Нам не хватает только одной детали, которую необходимо ввести вручную, поскольку она не следует из уравнений Гамильтона. Вспомним, что состояние газа представлено точкой на фазовой диаграмме и что эта точка постепенно движется, описывая траекторию в рамках границы, которая очерчивает нашу совокупность.

Выдвинем гипотезу о том, что газ в конце концов пройдет по всем точкам фазового пространства, или, другими словами, что у всех этих точек одинаковая вероятность быть занятыми. Этот принцип называется принципом равновероятности начальных состояний. Теперь у нас действительно достаточно условий для вычисления распределения скоростей и положений газа. Осталось только изложить теорию вероятностей.


Теория вероятностей


Предположим, что мы хотим спрогнозировать, что будет делать какой-то человек в воскресенье вечером. Как бы хорошо мы его ни знали, нам сложно угадать: люди иногда меняют свое мнение внезапно, и это придает их поведению некоторую хаотичность. Даже человек, который привык ходить в кино каждое воскресенье, однажды может проснуться с болью в желудке и остаться дома.

Учитывая сложность, которая таится в прогнозировании поведения человека, резонно предположить, что предсказать поведение миллионов людей еще сложнее. Но в действительности оказывается наоборот: каждый человек непредсказуем, но миллион людей ведут себя известным образом. Мы не можем знать, пойдет ли наш друг смотреть фильм в это воскресенье, но можем быть уверены, что определенный процент населения это сделает. Если нас интересует прогноз, сколько заработает кинотеатр в течение года, у нас более чем достаточно информации.

То же самое происходит с переменными, еще более хаотичными, чем человек, такими как результат броска игрального кубика. Невозможно узнать, получим ли мы при следующем броске три, но мы можем быть почти уверены, что на каждый миллион бросков количество выпавших троек составит одну шестую. Если бы результат многочисленных бросков был таким же непредсказуемым, как и одного, казино давно разорились бы.

Идея о том, что миллион человек более предсказуем, чем три, делает возможным и изучение газов. Именно тот факт, что число его молекул огромно, превращает газ в крайне регулярный объект, и мы можем использовать для прогнозирования теорию вероятностей. Хотя мы и не можем знать, как поведет себя каждая отдельная молекула, в случаях когда речь идет об огромном их числе, неизвестность уступает место предсказуемому поведению.


Вероятность и газ


Перейти на страницу:

Все книги серии Мир математики

Математики, шпионы и хакеры
Математики, шпионы и хакеры

Если бы историю человечества можно было представить в виде шпионского романа, то главными героями этого произведения, несомненно, стали бы криптографы и криптоаналитики. Первые — специалисты, виртуозно владеющие искусством кодирования сообщений. Вторые — гении взлома и дешифровки, на компьютерном сленге именуемые хакерами. История соперничества криптографов и криптоаналитиков стара как мир.Эволюционируя вместе с развитием высоких технологий, ремесло шифрования достигло в XXI веке самой дальней границы современной науки — квантовой механики. И хотя объектом кодирования обычно является текст, инструментом работы кодировщиков была и остается математика.Эта книга — попытка рассказать читателю историю шифрования через призму развития математической мысли.

Жуан Гомес

Математика / Образование и наука
Когда прямые искривляются
Когда прямые искривляются

Многие из нас слышали о том, что современная наука уже довольно давно поставила под сомнение основные постулаты евклидовой геометрии. Но какие именно теории пришли на смену классической доктрине? На ум приходит разве что популярная теория относительности Эйнштейна. На самом деле таких революционных идей и гипотез гораздо больше. Пространство Минковского, гиперболическая геометрия Лобачевского и Бойяи, эллиптическая геометрия Римана и другие любопытные способы описания окружающего нас мира относятся к группе так называемых неевклидовых геометрий. Каким образом пересекаются параллельные прямые? В каком случае сумма внутренних углов треугольника может составить больше 180°? Ответы на эти и многие другие вопросы вы найдете в данной книге.

Жуан Гомес

Математика / Образование и наука

Похожие книги

Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика