Читаем Путешествие от частицы до Вселенной. Математика газовой динамики полностью

Прежде чем сосредоточиться на поведении газа в состоянии равновесия, рассмотрим наиболее простые примеры теории вероятностей для разработки необходимого математического аппарата. Начнем с классического подбрасывания монеты, чтобы затем расширить эту модель на газ с частицами, обладающими разной энергией.

Предположим, что мы подбрасываем монетку в воздух больше миллиона раз. Мы знаем, что, согласно теории вероятностей и здравому смыслу, мы получим в половине случаев орла и в половине — решку. Вероятность какого-то события измеряется отношением к единице, то есть вероятность в 50 % выражается как 0,5. Итак, вероятность получить орла — 0,5. Поскольку вероятность получить решку также 0,5, можно заметить, что вероятность получить либо орла, либо решку равна единице, то есть 100 %. Это общий закон вероятностей: если даны все возможные результаты, сумма вероятностей их получения должна быть равна единице.

Вероятность получения орла относительно легко вывести: это 50 %. Но как мы можем узнать вероятность получения за три броска двух орлов и одной решки?

Рациональная стратегия состоит в том, чтобы сосчитать все вероятности, возможные при этой комбинации, и поделить полученное число на общее количество возможных бросков. Если обозначить через 1 орла и через 0 решку, мы увидим, что возможны три сочетания, дающие два орла и решку:

110, 101, 011.

Для того чтобы вычислить вероятность, мы должны узнать общее количество возможных последовательностей, а именно:

111, 110, 101, 100, 011, 010, 001, 000,

то есть у нас есть восемь вариантов, три из которых соответствуют нужной последовательности. Вероятность получения двух орлов и одной решки равна 3/8.

Однако газ состоит не из трех, а из миллиардов частиц. Следуя аналогии с монетами, какова вероятность получить ровно 70 % орлов при двух миллионах бросков? В этом случае становится очевидным, что наш метод вычисления вероятностей не годится, и нам нужно разработать более мощный математический аппарат, который позволил бы нам легко рассчитать вероятность некоторого распределения результатов для любого количества бросков, то есть распределение вероятностей.

Как мы увидим, существуют различные варианты распределения вероятностей, и каждый из них имеет место в каждом отдельном случае. В данном случае нас интересует, что происходит с дискретной переменной — это означает, что мы имеем дело с отдельными результатами, такими как орел или решка. Существует другой тип переменных, называемых непрерывными, под которыми подразумевается любая величина в некотором диапазоне: например от 0 до 10, включая любое число с произвольным количеством знаков после запятой.

Для наших рассуждений важно знать факториальную функцию. Факториал 3 обозначается 3! и вычисляется следующим образом:

3! = 3·2·1.

5! = 5·4·3·2·1.

Факториал п вычисляется следующим образом:

n! = n·(n — 1)·(n — 2)·…·2·1.

Теперь мы можем начать выводить формулу, которая даст нам вероятность получения некоторой последовательности орлов и решек при любом количестве бросков.

Для начала посмотрим, сколько возможных комбинаций выпадения орла и решки существует для n бросков. Для первого броска возможны два варианта: орел или решка. Для второго — еще два, что в сумме дает четыре. Для следующего броска у нас есть по две возможности для каждого предыдущего, что в сумме дает восемь. Итак, общее число возможностей для n бросков равно 2n, то есть два, умноженное само на себя n раз.

Далее нам нужно вычислить количество комбинаций, при которых можно получить орлов при n бросков. Подставляя различные числа, можно выяснить, что количество комбинаций задано биномиальным коэффициентом, который определяется по следующей формуле с использованием факториальной функции:


Вероятность выпадения k сторон, следовательно, равна разделенному на число комбинаций орлов и решек, которое, напомним, равно 2n. Поскольку в этом распределении вероятностей используется биномиальный коэффициент, оно известно как биномиальное распределение и может быть легко расширено на фальшивые монеты, где вероятность выпадения решки больше, чем орла, или наоборот.

Биномиальное распределение позволяет сделать прогнозы, которые, как кажется, противоречат здравому смыслу. Например, какова вероятность выпадения 50 орлов за 100 бросков? Применим нашу формулу, помня, что вероятность — это отношение к единице, а не к 100:


Этот результат может показаться удивительным, мы ведь ожидали 50 орлов на 100 бросков. Почему же вероятность получилась такой низкой? Ответ в том, что мы интересуемся вероятностью выпадения именно 50 орлов. Теперь найдем вероятность выпадения сорока девяти:

* * *

Перейти на страницу:

Все книги серии Мир математики

Математики, шпионы и хакеры
Математики, шпионы и хакеры

Если бы историю человечества можно было представить в виде шпионского романа, то главными героями этого произведения, несомненно, стали бы криптографы и криптоаналитики. Первые — специалисты, виртуозно владеющие искусством кодирования сообщений. Вторые — гении взлома и дешифровки, на компьютерном сленге именуемые хакерами. История соперничества криптографов и криптоаналитиков стара как мир.Эволюционируя вместе с развитием высоких технологий, ремесло шифрования достигло в XXI веке самой дальней границы современной науки — квантовой механики. И хотя объектом кодирования обычно является текст, инструментом работы кодировщиков была и остается математика.Эта книга — попытка рассказать читателю историю шифрования через призму развития математической мысли.

Жуан Гомес

Математика / Образование и наука
Когда прямые искривляются
Когда прямые искривляются

Многие из нас слышали о том, что современная наука уже довольно давно поставила под сомнение основные постулаты евклидовой геометрии. Но какие именно теории пришли на смену классической доктрине? На ум приходит разве что популярная теория относительности Эйнштейна. На самом деле таких революционных идей и гипотез гораздо больше. Пространство Минковского, гиперболическая геометрия Лобачевского и Бойяи, эллиптическая геометрия Римана и другие любопытные способы описания окружающего нас мира относятся к группе так называемых неевклидовых геометрий. Каким образом пересекаются параллельные прямые? В каком случае сумма внутренних углов треугольника может составить больше 180°? Ответы на эти и многие другие вопросы вы найдете в данной книге.

Жуан Гомес

Математика / Образование и наука

Похожие книги

Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика