Читаем Путешествие по Карликании и Аль-Джебре полностью

Я не знал что и подумать, но тут какая-то латинская буковка — не то Эн, не то Эм — сказала, что таких ошибок у них даже дети не делают и что любое число, возведённое в нулевую степень, всегда равно не нулю, а единице. Я несколько раз проверил это на силомере — правильно! И пять, и сто, и двести — все они в нулевой степени равны единице.

Тогда я решил возвести в нулевую степень нуль. Я рассуждал так: коли нуль — это число, а все числа в нулевой степени равны единице, то и нуль в нулевой степени тоже равен единице.

Ударил по наковальне и…

Лучше бы я этого никогда не делал!

Гирька словно взбесилась: сперва взвилась под облака, потом ушла куда-то под землю, потом опять взмыла вверх.

И так она металась туда-сюда, пока кто-то не догадался выключить силомер.

Тут уж никто не смеялся. У всех были испуганные лица — почти как на том представлении, где твой тёзка, Нулик, стащил знак умножения. Я и сам-то перепугался до смерти.

Страшнее всего было то, что гиря всё время куда-то проваливалась. Оказалось, числовая прямая уходит другим концом в бездонный колодец, где помещаются отрицательные числа.

Наверное, у меня был очень несчастный вид, потому что та же буква — не то Эм, не то Эн — подошла ко мне и стала утешать.

— Успокойтесь, — сказала она, — так может быть со всяким, кто впервые в Аль-Джебре. Нуль и в самом деле число, но совсем особенное. Вы ведь помните, что оно не бывает ни положительным, ни отрицательным. Поэтому обращаться с ним надо осторожно. А когда возводишь нуль, да ещё в нулевую степень, нужно быть осторожным вдвойне. Потому что при этом получается неопределённое число. Оно может быть и пятёркой, и миллионом, и бесконечностью, и положительным, и отрицательным, и даже нулём! Поэтому гирька до того растерялась и разнервничалась, что силомер испортился.

Славная буковка! Мне захотелось сказать ей что-нибудь приятное. Вообще-то у меня это плохо получается. Но я вовремя вспомнил, как моя тётя Нина разговаривает с гостями.

— Ах, ах, это в высшей степени интересно! — сказал я самым что ни на есть разлюбезным голосом.

— Благодарю вас, — засмеялась буковка. — Но не советую употреблять выражение «в высшей степени» в Аль-Джебре. Как бы ни была высока степень, всегда найдётся ещё более высокая. Ведь числа бесконечны.

Эх, подвела меня тётя!

Тут силомер снова наладили, и Тане вздумалось возвести число не в целую степень, а в дробную.

— Если возвести четыре в половинную степень, по-моему, получится два, — сказала она.

— С чего это ты взяла? — спросил я.

— А вот с чего: четыре в нулевой степени равно единице. Четыре в первой степени — четырём. Значит, четыре в половинной степени равно половине от четырёх, то есть двум.

Таня стукнула молотком. Гирька остановилась у числа два, и вспыхнула зелёная лампочка. Тогда и мне захотелось попробовать.

— Возвожу девять в половинную степень, — объявил я. — Рассуждаю так: девять в нулевой степени — это единица. Девять в первой степени — девять. Значит, девять в половинной степени равно четырём с половиной.

Я торжественно стукнул молотком, гирька остановилась на четырёх с половиной, и… вспыхнула красная лампочка. Я прямо обалдел. Несчастный я человек! Ну почему, почему мне так не везёт? Ведь я рассуждал точно так же, как Таня!

И снова на помощь мне пришла та же буковка (а я так и не запомнил — Эм она или Эн!).

— Дело в том, — сказала она, — что эта девочка допустила ошибку, а вы её повторили. Девять в половинной степени и вправду находится между единицей и девяткой. Но оно вовсе не равно половине от девяти. Для того чтобы возвести число в половинную степень, надо не делить его на два, а извлечь из него корень второй степени. А корень второй степени из девяти равен трём, а не четырём с половиной.

— Так почему же у Тани получилось правильно?

— Да потому, что корень второй степени из четырёх равен двум, а два и есть как раз половина от четырёх. И это — простое совпадение.

Таня, конечно, покраснела, а Олег (он всегда её выручает), чтобы отвлечь от неё внимание, сделал вывод:

— Значит, возвести число в степень, равную одной пятой, — это всё равно что извлечь из этого числа корень пятой степени.

Например:


31/5 = 5√3


— Ваша правда, — подтвердила буковка.

— Тогда, наверное, и обратно, — продолжал Олег. — Возвести число в пятую степень — это всё равно что извлечь из него корень степени одна пятая:


35 = 1/5√3


Что ты скажешь! Он и на этот раз попал в самую точку!

Тут мне пришло в голову, что если можно возводить числа в положительные степени, то почему бы не попробовать в отрицательные? Буковка посмотрела на меня пристально:

— Уж очень вы торопитесь! Аль-Джебра — государство большое. Для того чтобы с ним как следует познакомиться, нужны не дни, не недели, а годы…

Ещё чего! А как же Чёрная Маска? Так и останется без лица?

Посовещались немного и решили, что довольно ходить вокруг да около. Пора приниматься за дело. Но прежде неплохо бы закусить! То-то мне стали вспоминаться гостеприимные обжоры…

Буковка словно угадала мои мысли:

— Может быть, вы проголодались? Тогда советую зайти в кафе «Абракадабра».

А нам только того и надо!

Перейти на страницу:

Все книги серии Математическая трилогия

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное