Читаем Путешествие по Карликании и Аль-Джебре полностью

Мы тут же вызвали вагончик и заставили его остановиться сперва против числа 2,5, а потом против 3,44… Этого нам показалось мало. Мы назвали число минус пять и четыре миллионных: —5,000 004, и красный вагончик, миновав Нулевую станцию, превратился в синий и остановился на волосок дальше станции минус 5.

— Выходит, — неуверенно сказал Сева, — вся эта бесконечная дорога сплошь заполнена числами?

— Именно сплошь! — ответила мама-Двойка. — Можно сказать, непрерывно. У нас очень большая плотность населения. На всём пути не сыскать ни одной точечки, не заселённой каким-нибудь числом. Есть среди этих чисел и такие, величину которых мы никогда не можем вычислить точно.

— Что ж это за число, которое нельзя вычислить?

— Ну, хотя бы корень квадратный из двух: √2. Попробуйте найти число, которое при возведении в квадрат давало бы два.



Сева наморщил лоб, подумал немного, потом махнул рукой и засмеялся:

— И много таких чисел?

— Бесконечное множество. Их называют иррациональными в отличие от рациональных. Латинское слово «рацио» значит «разум». Следовательно, рациональные числа — это разумные числа, то есть числа, постижимые разумом.

Сева прямо задохнулся от смеха:

— Ой, умираю! Рациональные — значит разумные. А иррациональные — сумасшедшие, что ли?

— Ну, зачем же так! — обиделась мама-Двойка. — Просто они не поддаются точному вычислению. Поэтому их долгое время не признавали числами. Но с тех пор как у нас появилась воздушная монорельсовая дорога (или числовая прямая — так её называют по-другому), иррациональные числа после долгих скитаний получили, наконец, точный адрес. Вычислить их по-прежнему можно только приближённо. Зато легко указать место на монорельсовой дороге, где они живут. Вместе с числами рациональными они образуют дружную семью действительных чисел, — закончила мама-Двойка и снова заставила нас удивиться.

— А разве бывают и недействительные?

— Конечно. Есть числа мнимые, есть комплексные…

Сева не дал ей договорить.

— Вспомнил! — заорал он. — И Мнимая Единица может на что-нибудь пригодиться!

— Да, да, — подтвердила я, — так ответил автомат маленькой буковке с зонтиком: i.

— Оно и понятно, — сказала мама-Двойка, — латинской буквой i(по-русски — И) в Аль-Джебре обозначается Мнимая Единица.

— Но почему мнимая? Она что, воображаемая?

— Настолько воображаемая, что ей, как и другим мнимым числам, не нашлось местечка на всей бесконечной монорельсовой дороге.

— Так вот почему она была такая грустная! — смекнул Сева.

— А где же тогда живут мнимые числа? — спросил Олег.

— Всякому овощу своё время.

Пришлось спрятать любопытство в карман. Мы распрощались с мамой-Двойкой и пошли… Куда бы ты думал? Конечно, в Парк Науки и Отдыха.

Как мы там отдыхали, узнаешь из следующего письма.


Таня.


Молотобойцы

(Сева — Нулику)


Здравствуй, старик! Не удивляйся, что вместо Олега пишу тебе я. Мне так захотелось самому рассказать, как я здорово отличился, что он уступил мне свою очередь.

Говорят, великие люди занимались физическим трудом и спортом. Лев Толстой косил траву, шил сапоги. Учёный Павлов играл в городки. А я решил стать молотобойцем.

Здесь в парке есть занятный аттракцион — силомер. Такие встречаются и у нас, но этот устроен немного по-другому.

У нас ударяешь молотом по наковальне, и гирька подскакивает вверх. Чем сильнее ударишь, тем выше она поднимется. На таком силомере меряются силами. На здешнем — знаниями.

Рейка, вдоль которой движется гиря, очень похожа на монорельсовую дорогу. Только числовая прямая здесь расположена по-другому: не в длину, а в вышину. И числа на ней, начиная с нуля, только положительные. На этом силомере возводят числа в степень.

Задумываешь число, возводишь в уме в какую-нибудь степень, а потом, чтобы проверить себя, бьёшь молотком по наковальне. Гирька долетает до вычисленной степени. Если ты возвёл правильно, у этого числа зажигается зелёный огонёк, ошибся — красный.

Первый удар предоставили Тане. Ничего не поделаешь: девочка! Она возвела два в третью степень. У неё получилось восемь. Таня стукнула молотком,гирька взлетела к восьмёрке, и зажглась зелёная лампочка.



Потом стукнул Олег. Он возвёл два в десятую степень. Получилось 1024. И когда гирька долетела до этого числа, снова зажглась зелёная лампочка. Всё это показалось мне очень уж обыкновенным. Захотелось отмочить что-нибудь такое, чтобы все ахнули. Я объявил, что сделаю удар в честь моего друга Нулика-Профессора.

Возвёл двойку в нулевую степень. У меня получился нуль.

Я изо всей силы трахнул молотком по наковальне, и — ха-ха! — гирька осталась на нуле. Этого-то я и хотел! Но как же я удивился, когда вместо зелёного огонька зажёгся красный! Может быть, я так сильно ударил, что силомер испортился? Но почему же тогда все кругом засмеялись?

Перейти на страницу:

Все книги серии Математическая трилогия

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное