Читаем Путешествие по Карликании и Аль-Джебре полностью

— Совсем как гвоздик! Со шляпкой!

— Действительно, похоже на гвоздик, — согласилась Четвёрка. — Только у гвоздика одна шляпка, а у цифр могло быть много. Вот как писались девять вавилонских цифр:

— Смотрите, у девятки целый шляпный магазин! — обрадовалась Таня.

— Их очень легко сосчитать, эти шляпки, — сказал Олег.

— Это потому, что их не больше девяти. А вот сорок треугольников, пожалуй, и не сосчитаешь, — ответил Сева.

— А зачем же надо считать сорок треугольников? — удивилась Четвёрка. — Ведь для цифры десять у них был другой, простой знак. Вот такой:

Если нужно было написать двадцать, выдавливались два таких знака. А двадцать четыре писали, как и мы сейчас, — сперва число десятков, а затем число единиц. Вот так:

— Да это и в самом деле проще иероглифов, — обрадовался Сева.

— Это не только проще, но это уже похоже и на наш способ написания чисел. Справа единицы, а за ними десятки, потом сотни… Словом, все цифры становятся на свои позиции, как в строю. Потому этот способ и называется позиционным.

— Значит, мы записываем числа позиционным способом? — спросила Таня.

— Конечно, — ответила Четвёрка. — И начало этому положено в Вавилоне.

— Понимаю, — добавил Сева, — у нас счёт вавилонский…

— Вот и неверно, — остановила его Четвёрка. — Счёт у нас не вавилонский, а свой, особенный. Ведь мы считаем по десятичной системе, а у вавилонян была шестидесятиричная!

— Это как же так? — спросил Сева.

— А вот как: возьмём какое-нибудь число, ну, например, 3662. В нашей системе двойка здесь обозначает число единиц, за ней стоит шестёрка — это число десятков, а следующая шестёрка — число сотен, наконец, тройка — число тысяч.

Значит, это число можно бы написать и так:

3000+600+60+2=3662.

А у вавилонян всё совсем по-другому. Если бы они знали арабские цифры, они бы это число записали так:

1 1 2.

По их системе двойка, как и у нас, остаётся числом единиц — первый разряд. А вот стоящая слева от неё единица — это не число десятков, а число шестидесятков — второй разряд. А следующая единица — уже число 60×60=3600 — третий разряд. Заметьте, что между разрядами нужно обязательно оставлять свободное место, иначе можно легко запутаться, что, кстати, частенько случалось.

Таким образом, наше число по вавилонской системе выглядело бы так:

3600+60+2=3662.

Вот как они считали, — закончила Четвёрка.

— Ой, как трудно! Хорошо, что у нас так никто не считает! — воскликнула Таня.

— Ошибаетесь, — поправила её Четвёрка. — Вы тоже считаете так… иногда.

— Я? Никогда!

— А я вам сейчас напомню. Скажите, пожалуйста, сколько в часе минут?

— Минут? Шестьдесят.

— Так. А сколько в часе секунд?

— Сейчас скажу. Шестьдесят на шестьдесят… Три тысячи шестьсот, — сосчитала Таня.

— Вот видите. Вы же делите часы и минуты не на десять частей, а на шестьдесят! Значит, и вы считаете по шестидесяткам!

Таня только руками развела:

— Вот не знала, что у нас осталось что-то от Древнего Вавилона!

Музей Пушкина

— Где мы только не побывали сегодня! — задумчиво сказал Олег, когда мы возвращались в Арабеллу. — И в Риме, и в Китае, и в Египте, и у древних славян, и в Вавилоне, а Нулика так нигде и не нашли.

— Выходит, мы с вами были правы, — лукаво улыбнулась мне Четвёрка. — Но не беспокойтесь, друзья! Нулика мы обязательно найдём! На всякий случай заглянем в музей Пушкина.

— Как, у вас есть музей Пушкина? — изумились ребята. — Поэт в Арифметическом государстве? Какое он имеет к вам отношение?

— Пушкин был очень разносторонним человеком, — возразила Четвёрка. — Он прилежно изучал историю, любил музыку и интересовался нами, жителями Арабеллы.

В это время мы подошли к небольшому дому, украшенному портретом великого поэта.

Четвёрка с бантиком ввела нас в комнату, где не было ничего, кроме странного рисунка, висевшего на стене.

— Этот рисунок взят нами из рукописей Александра Сергеевича, — продолжала Четвёрка. — Дело в том, что с давних пор люди ломали головы над тем, откуда взялось начертание арабских цифр. Существует много всевозможных догадок. Пушкин тоже предложил свой остроумный домысел, который нам очень понравился. Он решил, что все десять арабских цифр, включая нуль, помещаются в этом магическом квадрате. Чтобы легче разобраться в его рисунке, взгляните сюда.

Четвёрка достала большую папку, которой мы вначале не заметили. Там было десять листов. На каждом — всё тот же рисунок, но всякий раз жирная линия обрисовывала новую фигуру, в которой мы без особого труда узнавали какую-нибудь из наших цифр. Только пятёрка немного подгуляла — у неё не хватало хвостика.

Четвёрка с бантиком объяснила, что в древние времена у пятёрки хвостика не было. Он вырос несколько позже.

— Интересно! — сказал Олег. — Но можно ли считать, что предположение Пушкина верно?

— Многие его оспаривают. Но нам, арабелльцам, оно по душе. Приятно сознавать, что ты вышел из магического квадрата!

— Здесь даже и нуль квадратный, — подхватил Сева.

— А нашего Нулика так и не видно, — сокрушённо вздохнула Таня.

В это время мы услышали звон старинных часов. Било двенадцать.

Перейти на страницу:

Все книги серии Карликания

Черная маска из Аль-Джебры
Черная маска из Аль-Джебры

«Чёрная Маска из Аль-Джебры» — продолжение сказки «Три дня в Карликании», вышедшей в 1964 году в издательстве «Детская литература».Действие сказки происходит в соседнем с Карликанией государстве Аль-Джебре.Житель Арифметического государства Нулик случайно очутился у входа в таинственную пещеру. Здесь он увидел странное существо в чёрной маске. Незнакомец сообщает Нулику, что он заколдован и обречён носить маску до тех пор, пока его не расколдуют.Но Нулик ещё слишком мал для такого серьёзного дела. Поэтому он вызывает в Карликанию своих друзей.Ребята попадают в незнакомую им страну Аль-Джебру. Там с ними происходят всевозможные приключения, о которых они рассказывают Нулику в письмах.

Владимир Артурович Левшин , М. Александрова , Эмилия Борисовна Александрова

Детская образовательная литература / Книги Для Детей
Путешествие по Карликании и Аль-Джебре
Путешествие по Карликании и Аль-Джебре

«Сказки да не сказки» — так авторы назвали свою книжку. Действие происходит в воображаемых математических странах Карликании и Аль-Джебре. Герои книги, школьники Таня, Сева и Олег, попадают в забавные приключения, знакомятся с основами алгебры, учатся решать уравнения первой степени.Эта книга впервые пришла к детям четверть века назад. Её первые читатели давно выросли. Многие из них благодаря ей стали настоящими математиками — таким увлекательным оказался для них мир чисел, с которым она знакомит.Надо надеяться, с тем же интересом прочтут её и нынешние школьники. «Путешествие по Карликании и Аль-Джебре» сулит им всевозможные дорожные приключения, а попутно — немало серьёзных сведений о математике, изложенных весело, изобретательно и доступно. Кроме того, с него начинается ряд других математических путешествий, о которых повествуют книги Владимира Лёвшина «Нулик-мореход», «Магистр рассеянных наук», а также написанные им в содружестве с Эмилией Александровой «Искатели необычайных автографов», «В лабиринте чисел», «Стол находок утерянных чисел».

Владимир Артурович Левшин , Эмилия Борисовна Александрова

Детская образовательная литература / Математика / Книги Для Детей / Образование и наука

Похожие книги

Удивительные истории о существах самых разных
Удивительные истории о существах самых разных

На нашей планете проживает огромное количество видов животных, растений, грибов и бактерий — настолько огромное, что наука до сих пор не сумела их всех подсчитать. И, наверное, долго еще будет подсчитывать. Каждый год биологи обнаруживают то новую обезьяну, то неизвестную ранее пальму, то какой-нибудь микроскопический гриб. Плюс ко всему, множество людей верят, что на планете обитают и ящеры, и огромные мохнатые приматы, и даже драконы. О самых невероятных тайнах живых существ и организмов — тайнах не только реальных, но и придуманных — и рассказывает эта книга.Петр Образцов — писатель, научный журналист, автор многих научно-популярных книг.

Петр Алексеевич Образцов

Детская образовательная литература / Биология, биофизика, биохимия / Биология / Книги Для Детей / Образование и наука