Читаем Путеводитель для влюбленных в математику полностью

Числа π и  – иррациональные, но мы можем сделать более сильное утверждение: число π – трансцендентно.

Рациональные числа выражаются через соотношение целых чисел; скажем, 5/2, – 2/3, 7/1. Иными словами, это решения уравнений вида ax + b = 0, где a и b – целые числа. Например, 5/2 – это решение уравнения 2x – 5 = 0.

Число не входит во множество рациональных чисел (см. главу 4) и не является решением линейного уравнения вида ax + b = 0, где a и b – целые числа. Зато оно является решением квадратного уравнения x² – 2 = 0.

А что насчет π? Оно иррационально и, конечно, тоже не является решением линейного уравнения с коэффициентами среди целых чисел. Может быть, оно является решением какого-нибудь квадратного уравнения с коэффициентами среди целых чисел: ax² + bx + c = 0? Придется вас разочаровать, это не так. А может, стоит повысить степень? Кубическое уравнение ax³ + bx² + cx + d = 0? Снова нет. Биквадратное? Уравнение пятой степени? Сотой? Миллионной?..

На самом деле число π не является решением полиномиального уравнения любой степени с целочисленными коэффициентами. Другими словами, нет такого уравнения

anxⁿ + an–1xⁿ–1 + … + a2x² + a1x + a0 = 0

(где любое ak представляло бы собой целое число), куда можно было бы подставить π вместо x, чтобы все сошлось. Это и означает, что число π трансцендентное.

Взаимно простые числа

Странным образом число π встречается в областях математики, не имеющих ничего общего ни с кругами в частности, ни с геометрией в целом. Например, число π мистически входит в формулу Стирлинга для вычисления приблизительного значения факториалов (см. главу 10). А сейчас мы узнаем, как наше заветное число связано с важным свойством очередного вида целых чисел – взаимно простых.

Два положительных целых числа называют взаимно простыми, если их единственный общий делитель равен 1 (при этом по отдельности они могут быть и составными).

Например, присмотримся к числам 15 и 28. У них следующие делители:



Таким образом, 15 и 28 взаимно простые.

С другой стороны, числа 21 и 35 не взаимно простые, потому что оба делятся на 7.

Сыграем в кости? Какова вероятность того, что очки, выпавшие на обоих кубиках, будут взаимно простыми?

С равной вероятностью любой из них может выпасть гранью с цифрой 1, 2, 3, 4, 5 или 6. Каким бы ни был результат на первому кубике, второй выпадет по-своему независимо от него. Там тоже 6 вариантов. Всего это дает 36 комбинаций:



Все эти варианты равновероятны. С помощью таблицы мы можем вычислить, скажем, вероятность того, что сумма чисел на гранях двух кубиков будет равна 7. Это произойдет в шести случаях: (1, 6), (2, 5), (3, 4), (4, 3), (5, 2) и (6, 1). Таким образом, вероятность такого события равна



Вернемся к нашему вопросу: какова вероятность того, что два числа, выпавшие на разных кубиках, – взаимно простые? Давайте нарисуем новую таблицу и поставим звездочку везде, где пары чисел взаимно простые, например 5 и 2 или 2 и 5, но не 4 и 6.

Мы видим, что нам подходит 23 варианта. Таким образом, вероятность равна

Теперь поиграем в двадцатигранные кости[66]! Какова вероятность того, что они выпадут гранями со взаимно простыми числами? Нам придется построить таблицу побольше! В ней будет 20 строк, 20 столбцов и 400 клеток.



Если мы педантично пересчитаем все звездочки, то придем к выводу, что вероятность составляет

Поговорим про общий случай. Какова вероятность того, что два произвольных числа от 1 до N – взаимно простые? Здесь нам уже понадобится компьютер. Рассмотрим все комбинации – (1, 1), (1, 2), (1, 3) и т. д. до (N, N) – и посчитаем, как много пар взаимно простых чисел нам повстречается. Всего придется перебрать N² вариантов[67]. У нас получатся такие результаты:



Чем дальше мы уходим в бесконечность, тем ближе вероятность к 0,6079. И откуда же взялось это число? Чудесным образом предел нашего ряда оказался равен:



Число π встречается не только в геометрии, оно вращается в разнообразных кругах!


Глава 7

e

Леонард Эйлер[68]

Когда твоим именем называют число, это ли не величайшая честь для математика? Швейцарец Леонард Эйлер жил в XVIII веке, и в главе 7 мы поговорим о числе Эйлера[69]. Его обозначают буквой e.

Число Эйлера можно задать разными способами[70], но стандартным считается следующий:



Этот ряд уходит в бесконечность. Восклицательными знаками обозначен факториал. Для положительного целого числа n факториал считают по такой формуле:

n! = n × (n – 1) × (n – 2) × (n – 3) × … × 2 × 1.

Например, 4! = 4 × 3 × 2 × 1 = 24. Факториал нуля равен 1. Вы можете узнать о факториале больше в главе 10.

Достаточно сделать всего несколько шагов по приведенному выше алгоритму, чтобы вычислить e c хорошей точностью. Когда мы дойдем до 1/10! сумма будет равна



Это довольно близко к более точному значению 2,718281828459045…

Перейти на страницу:

Все книги серии Библиотека фонда «Эволюция»

Происхождение жизни. От туманности до клетки
Происхождение жизни. От туманности до клетки

Поражаясь красоте и многообразию окружающего мира, люди на протяжении веков гадали: как он появился? Каким образом сформировались планеты, на одной из которых зародилась жизнь? Почему земная жизнь основана на углероде и использует четыре типа звеньев в ДНК? Где во Вселенной стоит искать другие формы жизни, и чем они могут отличаться от нас? В этой книге собраны самые свежие ответы науки на эти вопросы. И хотя на переднем крае науки не всегда есть простые пути, автор честно постарался сделать все возможное, чтобы книга была понятна читателям, далеким от биологии. Он логично и четко формулирует свои идеи и с увлечением рассказывает о том, каким образом из космической пыли и метеоритов через горячие источники у подножия вулканов возникла живая клетка, чтобы заселить и преобразить всю планету.

Михаил Александрович Никитин

Научная литература
Ни кошелька, ни жизни. Нетрадиционная медицина под следствием
Ни кошелька, ни жизни. Нетрадиционная медицина под следствием

"Ни кошелька, ни жизни" Саймона Сингха и Эдзарда Эрнста – правдивый, непредвзятый и увлекательный рассказ о нетрадиционной медицине. Основная часть книги посвящена четырем самым популярным ее направлениям – акупунктуре, гомеопатии, хиропрактике и траволечению, а в приложении кратко обсуждаются еще свыше тридцати. Авторы с самого начала разъясняют, что представляет собой научный подход и как с его помощью определяют истину, а затем, опираясь на результаты многочисленных научных исследований, страница за страницей приподнимают завесу тайны, скрывающую неутешительную правду о нетрадиционной медицине. Они разбираются, какие из ее методов действенны и безвредны, а какие бесполезны и опасны. Анализируя, почему во всем мире так широко распространены методы лечения, не доказавшие своей эффективности, они отвечают не только на вездесущий вопрос "Кто виноват?", но и на важнейший вопрос "Что делать?".

Саймон Сингх , Эрдзард Эрнст

Домоводство / Научпоп / Документальное
Введение в поведение. История наук о том, что движет животными и как их правильно понимать
Введение в поведение. История наук о том, что движет животными и как их правильно понимать

На протяжении всей своей истории человек учился понимать других живых существ. А коль скоро они не могут поведать о себе на доступном нам языке, остается один ориентир – их поведение. Книга научного журналиста Бориса Жукова – своего рода карта дорог, которыми человечество пыталось прийти к пониманию этого феномена. Следуя исторической канве, автор рассматривает различные теоретические подходы к изучению поведения, сложные взаимоотношения разных научных направлений между собой и со смежными дисциплинами (физиологией, психологией, теорией эволюции и т. д.), связь представлений о поведении с общенаучными и общемировоззренческими установками той или иной эпохи.Развитие науки представлено не как простое накопление знаний, но как «драма идей», сложный и часто парадоксальный процесс, где конечные выводы порой противоречат исходным постулатам, а замечательные открытия становятся почвой для новых заблуждений.

Борис Борисович Жуков

Зоология / Научная литература

Похожие книги