Долгосрочное поведение системы – осцилляция между двумя величинами,
Какое еще поведение функции мы можем наблюдать, итерируя логистическое отображение? В следующем пункте нашей экспедиции
А вот таблица итераций:
Долгосрочное поведение функции занятно, но по-прежнему стабильно. Система идет по циклу из четырех величин
Мы проследили долгосрочное поведение итераций логистического отображения
Жизнь хороша. Мы знаем исходную величину:
Настало время для последнего примера:
Что происходит? Неясно. Попробуем изобразить на графике первые 30 итераций:
Хм… Ритм не прослеживается. Спокойствие, только спокойствие! Изобразим на графике первые 100 итераций.
Колебания величин выглядят случайными. Разумеется, на самом деле это не так! Значение функции на каждом шаге можно точно подсчитать по формуле
Великолепно: итерации беспорядочны, но система предсказуема на 100 %!
• Мы знаем исходную величину:
• Мы знаем правило перехода от одного шага к другому:
Следовательно, мы можем вычислить состояние системы, скажем, на тысячной итерации. Верно?
Неверно.
Мы загнаны в угол стечением двух обстоятельств:
Когда мы проводим вычисления на калькуляторе или на компьютере, результат зачастую оказывается приблизительным. Например, если мы делим 1 на 3, наши приборы выдают десятичную дробь 0,3333333. В ней, скажем, семь знаков после запятой. На самом деле троек после запятой бесконечно много, но калькулятор ограничивается конечным количеством цифр. После нескольких итераций функции
Они ведут нас к загвоздке –
Замечу, что первые десять итераций или около того не приводят к значительным отличиям. Но затем траектории начинают расходиться. Это можно проиллюстрировать на графиках эволюции той и другой системы. Сплошная линия соответствует итерированию системы с исходным значением 0,1. Пунктирная линия иллюстрирует итерирование системы с исходным значением 0,10001.
Каково значение
Разумеется, мы доверяем вычисления компьютеру, но получается какая-то чепуха. Проиллюстрируем этот факт, проделав вычисления трижды с разным уровнем точности (заданным количеством знаков после запятой). Мы получим следующие результаты:
Мы будем биться до последней капли крови. Компьютер может работать с
Точное значение
К чему мы пришли? Несмотря на то что мы знаем исходное состояние системы и правило перехода от одного шага к другому, мы не в силах в точности предугадать ее состояние на 1000-м шаге.
Можно доказать, что точное значение