Теперь ваша очередь. С помощью покерного калькулятора сравните шансы на выигрыш двух игроков со следующими наборами «карманных» карт:
– 10♦9♦ и 2♣2♥.
– 2♣2♥ и A♠K♥.
Дальше попробуйте построить рейтинг трех наборов «карманных» карт: A♠K♥, 10♦9♦ и 2♣2♥. Глава подошла к концу, поэтому вы вот-вот узнаете ответ.
Глава 20
Вероятность в медицине
Объявлено медицинское тестирование, диагностирующее наличие или отсутствие некой редкой болезни. Это чрезвычайно надежный тест. Вы принимаете решение пройти его и с ужасом получаете положительный результат. Насколько стоит беспокоиться?
Перевести беспокойство на язык цифр непросто, но в подобных ситуациях нужно сосредоточиться, потому переформулируем вопрос: насколько велика вероятность, что вы действительно подхватили это редкое заболевание?
Для ответа необходимо знать уровень надежности теста, а кроме того, как мы скоро увидим, уровень распространения болезни. Вот эти данные.
Редкая болезнь поразила 0,1 % населения. Состояние здоровья одного человека из тысячи вызывает тревогу.
Тест не идеален, как и всякий медицинский тест. Предположим, он дает верную информацию в 98 % случаев. Таким образом:
– среди 100 здоровых людей 98 человек получают верный отрицательный результат и 2 человека – неверный положительный;
– среди 100 больных людей 98 человек получают верный положительный результат и 2 человека – неверный отрицательный.
Разумеется, мы хотим пройти еще более надежный тест, но предположим, что это единственный возможный способ диагностировать наличие или отсутствие болезни.
Вопрос: если результаты теста положительные, какова вероятность того, что вы больны?
Ответ выглядит очевидным. Мы указали, что тест дает верные результаты в 98 % случаев. Таким образом, вы больны с вероятностью 98 %. Верно?
Вообразим город с миллионом жителей. Один из тысячи болен. Другими словами, 1000 жителей больны и 999 000 здоровы.
Все жители проходят медицинское тестирование. Посмотрим, сколько будет положительных результатов, если тест эффективен на 98 %.
• Среди тысячи больных жителей положительный результат получит большинство, но не все. Их количество 1000 × 0,98 = 980.
• Среди 999 000 здоровых жителей большинство покинет поликлинику с радостной новостью об отсутствии болезни, но 2 % получат ложный результат. Это дает еще 999 000 × 0,02 = 19 980 положительных результатов.
В общей сложности 980 + 19 980 = 20 960 жителей получат положительный результат.
Теперь мы можем правильно ответить на поставленный вопрос: какова вероятность того, что вы больны, если ваш результат тестирования положительный?
Среди двадцати с лишним тысяч людей с положительным результатом всего лишь меньше тысячи действительно больны. Точная вероятность правильности теста в этом случае равна
Вероятность того, что вам стоит беспокоиться,
Стало быть, тесту грош цена? Не совсем.
Во-первых, если ваш лечащий врач имеет веские причины предполагать у вас наличие этого редкого заболевания, вы больше не «случайный» пациент. И если у вас действительно прослеживаются определенные симптомы, вероятность того, что вы заражены, уже не одна тысячная, а скажем, одна четвертая[204]
. В этом случае положительный результат тестирования имеет гораздо больший смысл, чем нестрого обоснованные выводы.Во-вторых, если болезнь действительно опасна, тест, эффективный на 98 %, позволяет хорошо просеять большие массы населения на предмет наличия или отсутствия болезни. Пациенты с положительным результатом могут пройти вторую диагностику, дающую еще более точные результаты.
Разумеется, отрицательный результат – не повод успокаиваться полностью. Какова вероятность того, что он верен? (Ответ я дам в конце главы.)
Интуиция отказывается принимать тот факт, что тест, надежный на 98 %, может быть настолько несовершенным, но вычисления говорят сами за себя. Впрочем, голые цифры могут обманывать нашу интуицию. Попробуем нарисовать картинку.
Заметим: диаграмма не соблюдает пропорции (0,1 % больных, эффективность теста 98 %).
На чертеже большой прямоугольник изображает все население. Фрагмент прямоугольника слева вверху обозначает группу больных жителей, оставшаяся часть – группу здоровых жителей. Серая полоса сверху – это все жители (из обеих групп) с положительным результатом. Белая область внизу – все жители (опять-таки из обеих групп) с отрицательным результатом
Чертеж иллюстрирует основные детали вышеописанной ситуации:
• болезнь редкая – крохотный фрагмент большого прямоугольника символизирует больную часть населения;
• тест верно диагностирует наличие болезни у подавляющей части больных – почти весь прямоугольник слева вверху закрашен серым;
• тест верно диагностирует отсутствие болезни у подавляющего большинства здоровых людей – огромная область большого прямоугольника остается белой;