Гиперболическая плоскость – это область внутри обозначенной точками окружности. Две гиперболические прямые – дуги пунктирных окружностей, еще одна гиперболическая прямая – диаметр окружности, обозначенной точками. Замечу, что конечные точки дуг и диаметра не относятся к соответствующим гиперболическим прямым. (Обозначенные пунктиром окружности не входят в гиперболическую плоскость, они просто показывают, по какому принципу мы вычерчиваем гиперболические прямые – это части окружностей, пересекающих обозначенную точками окружность под прямыми углами.)
На следующем чертеже вы видите три гиперболические прямые. Две из них пересекаются, а третья параллельна и той и другой! Такое совершенно невозможно на евклидовой плоскости.
Здесь все не так, как мы привыкли. Многие геометрические «факты» на евклидовой плоскости не работают в случае гиперболической плоскости.
Для начала: все не так с треугольниками. На евклидовой плоскости сумма углов треугольника равна 180° (мы доказали это обстоятельство в главе 13, однако опирались на постулат о параллельных прямых). На гиперболической плоскости сумма углов треугольника меньше 180°.
На евклидовой плоскости площадь треугольника может быть настолько большой, насколько мы того хотим. На гиперболической плоскости максимальная площадь треугольника не может превышать некоторой величины, и есть простая формула для подсчета площади. Если сумма углов треугольника равна
Квадрат – это четырехугольник, в котором все углы равны 90°. Вот интересный факт о квадратах на гиперболической плоскости:
Почему прямоугольников здесь нет? Подумаем о четырехугольнике
Можно замостить евклидову плоскость равносторонними треугольниками или шестиугольниками[196]
. Однако нельзя замостить ее правильными пятиугольниками. Почему? Углы правильного пятиугольника равны 108°. Углы при общей вершине трех правильных пятиугольников дают в сумме 324°, что меньше полного угла. Остается зазор. Четыре правильных пятиугольника не могут иметь общую вершину, в противном случае углы при ней давали бы в сумме 432°, что превышает 360°.В то же время углы правильного
Углы при общей вершине четырех таких пятиугольников дают в сумме ровно 360°. Таким образом, ими можно замостить всю гиперболическую плоскость, как показано на рисунке.
Все пятиугольники на рисунке совпадают по размеру и по форме. Они выглядят все меньше и меньше, приближаясь к границе, но это всего лишь особенность изображения гиперболической плоскости. На самом деле все «паркетины» на иллюстрации абсолютно идентичны. Это правильные многоугольники с пятью углами по 90° каждый, и их можно плотно пригнать друг к другу[197]
.Вот еще два примера замощения гиперболической плоскости для услаждения ваших глаз.
Часть III
Неопределенность
Глава 19
Нетранзитивные игральные кости[198]
Мир одержим выстраиванием рейтингов. Мы составляем рейтинги атлетов, спортивных команд, больниц, ресторанов, фильмов, поп-музыки, студентов, коллег, городов, работы, машин, и т. д., и т. д. Нам нравится знать «самое-самое» – то, что входит в «первую десятку».
Это все чепуха, забавная чепуха, но тем не менее. Среди прочего чепуха происходит от того, насколько субъективна методология оценки. Если определенный ресторан в вашем городе признан лучшим, это не обязательно ваш любимый ресторан. Ваши предпочтения могут отличаться от суждений ресторанных критиков, а их взгляды на один и тот же вопрос зачастую прямо противоположны.