Можно выбрать объективную систему оценивания и все равно получать ничтожные результаты: например, оценивать фильмы по сумме выручки от их проката – это объективно и поддается подсчету. Можно аргументировано доказать: чем лучше фильм, тем больше людей жаждут заплатить за то, чтобы увидеть его. Но бывает такое, что фильм, сорвавший кассу, навевает на вас скуку, а малобюджетный инди-фильм[199]
западает в душу. Выручка от проката обычно говорит скорее о маркетинге, а не качестве картины.Но, предположим, мы преодолели субъективность и достигли всеобщего соглашения относительно того, как сравнивать конкурентов. Попробуем выпарить идею ранжирования до ее математической сути. Улетучится ли тогда вся чепуха?
Сыграем в простую игру. Каждый бросит кубик, и у кого выпадет больше очков, тот выиграет. Если мы возьмем два обыкновенных кубика, где грани пронумерованы от одного до шести, то нет смысла говорить, что одна чем-то лучше другой. Они одинаковые.
Теперь сменим числа на гранях. Назовем наши игральные кости
Какая из них лучше,
Для того чтобы ответить на этот вопрос, рассмотрим все вероятности: как могут выпасть игральные кости? Если игральная кость
Составим схему, включающую все 36 возможных комбинаций, где отмечено, кто выигрывает в каждом отдельном случае,
Становится очевидно, что игральная кость
Профессиональные игроки скажут, что шансы на победу
Как ни назови это преимущество, но
Добавим еще одну игральную кость. Внимание, появился новый соперник! Пусть на грани
Мы видим, что
В схватке один на один
Значит,
Казалось бы, среди трех игральных костей
Начертим снова схему всех возможностей:
Посмотрите!
Мы пришли к трем ошарашивающим выводам:
–
–
–
Ни одну из игральных костей нельзя назвать «лучшей», и ранжировать их бессмысленно.
Сколько еще рейтингов в нашей жизни лишены смысла?
Вот еще несколько игральных костей для изучения; эту задачу придумал Брэдли Эфрон, профессор статистики в Стэнфорде.
Сравним четыре игральные кости. Проработайте варианты, когда № 1 противостоит № 2, № 2 противостоит № 3, № 3 противостоит № 4, и № 4 противостоит № 1. Какая игральная кость лучше в каждой схватке? Как вы их проранжируете?
Ответы – в конце главы.
Вы играете в покер? Говоря точнее, вы играете в техасский холдем[200]
? Допустим, два человека играют в техасский холдем, и вы украдкой заглянули в их «карманные» карты. Пусть у первого на руках A♠K♥, а у второго 10♦9♦. У кого выше вероятность выиграть? У первого игрока карты большего достоинства, зато у второго игрока больше шансов на стрит[201] и флэш[202].Нам необходима дополнительная информация о пяти общих картах, лежащих рубашкой вниз. В колоде осталось 48 карт из 52. Нам придется перебрать все варианты, какими могут быть перетасованы эти карты, чтобы выяснить, какие пять карт окажутся на столе и кто из двух игроков победит (или же оба сыграют вничью). Есть около двух миллионов комбинаций по 5 карт из 48 карт[203]
. Нам не под силу провести все расчеты самостоятельно, поэтому прибегнем к помощи компьютера. Забейте в поисковик словосочетание «покерный калькулятор», и вы найдете уйму сайтов, где можно провести необходимые вычисления.С помощью покерного калькулятора мы выясним, что игрок с «карманными» картами A♠K♥ побеждает с вероятностью 58,6 %, игрок с «карманными» картами 10♦9♦ побеждает в 41 % случаев, а 0,4 % остается на ничью.
Вывод: лучше иметь «карманные» карты A♠K♥, чем 10♦9♦.