Евклид не пытался дать определения базовым геометрическим объектам – точке, прямой линии, плоскости[188]
. Он поступил иначе:Чтобы дать старт геометрии, Евклид сформулировал пять основных постулатов. В грубом переводе они звучат так:
1. Если даны две точки, есть одна и только одна прямая, проходящая через эти точки.
2. Если дан отрезок, его можно неограниченно продолжать по прямой.
3. Если дана точка и отрезок, есть одна и только одна окружность с центром в данной точке и радиусом, равным данному отрезку.
4. Любые два прямых угла[189]
равны между собой.5. Если две прямые пересекают данную прямую и внутренние углы, получившиеся при пересечении, вместе меньше двух прямых углов, эти две прямые рано или поздно пересекутся (см. рисунок).
Первые четыре постулата просты, их легко понять. Но пятый вносит некоторую неразбериху. Подумаем, о чем он говорит.
Обозначим исходную прямую
Постулат требует от нас рассмотреть ситуацию, при которой внутренние углы (лежащие по одну сторону от
Переходим к сути постулата. Если эти два угла меньше прямых,
Приняв эти пять постулатов за данность, Евклид перешел к доказательству сонма дивных теорем.
Пятый постулат Евклида кажется неуклюжим. Его неприглядность контрастирует с изяществом и простотой первых четырех постулатов. Математика основана не только на практике, но и на эстетике, поэтому формулировка Евклида взывает к редактуре.
Мы предлагаем вашему вниманию более простой вариант.
5'. Если дана прямая и точка, не лежащая на данной прямой, есть одна-единственная прямая, проходящая через данную точку и не пересекающая ее.
Эта альтернативная версия пятого постулата Евклида известна под названием
Нам даны прямая
Математики показали, что пятый постулат Евклида и постулат о параллельных прямых эквивалентны. Это означает, что теоремы, которые мы можем доказать на основе первых четырех постулатов и постулата 5, – те же самые, что можно доказать на основе первых четырех постулатов и постулата 5'.
Несмотря на то что формулировка 5' несколько проще, чем 5, все же она не настолько изящная и блестящая, как первые четыре. Можно ли избавиться от нее? Можно ли доказать постулат о параллельных прямых как теорему и не принимать в качестве фундаментального утверждения?
Постулат о параллельных прямых накладывает два условия: во-первых, существует прямая, проходящая через точку
Естественный способ справиться с проблемой – попробовать
(A) Чтобы доказать
(B) Чтобы доказать
Дальше мы выстраиваем цепочку умозаключений, пока не дойдем до противоречия. Оно свидетельствует о фундаментальной ошибочности утверждения (A) или (B) – смотря что мы предположили:
• Если предположение об отсутствии вышеописанной прямой приводит к противоречию, она существует.
• Если предположение о существовании нескольких вышеописанных прямых приводит к противоречию, такая прямая единственная.
Математики бились как проклятые – и потерпели поражение. Говоря точнее, результат казался диким (треугольник с суммой углов не 180°), но противоречия в нем не было.
Ничего страшного. Математики не тешат себя надеждой, что могут справиться с любой проблемой, встающей на их пути. Мы продолжаем работать как проклятые и передаем пас следующим поколениям, уповая, что у наших преемников возникнут идеи получше.