Читаем Путеводитель по лжи полностью

Или вот еще пример: допустим, вы захотели поговорить о безработице как об общей проблеме, но тут возникает риск объединения в одной выборке людей с самым разным жизненным опытом. Некоторые безработные физически недееспособны; другие были уволены по объективной причине, например потому что были пойманы с поличным во время кражи или потому что пришли на работу в нетрезвом виде. Кто-то хотел бы работать, но ему не хватает квалификации; кто-то отбывает срок; кто-то больше не хочет работать, потому что снова начал учиться, ушел в монастырь или находится на иждивении. Когда статистику используют, чтобы повлиять на государственную политику, собрать деньги на какое-то дело или чтобы выпустить газету с заголовком поярче, нюансы часто опускают. А ведь именно они порой кардинально меняют дело.

Эти нюансы часто говорят сами за себя[69]. Люди теряют работу по разным причинам. Вероятность того, что алкоголик или вор станет безработным, может быть в четыре раза выше, чем в случае с любым другим человеком. И подобные детали часто теряются при объединении выборок. Учитывая эти факторы в своем анализе данных, вы четко увидите, кто безработный и почему, а это, в свою очередь, может привести к разработке более качественных обучающих программ или к открытию дополнительных центров анонимных алкоголиков в том городе, где эти организации необходимы.

Если в разных центрах, изучающих поведение людей, используют для вещей разные определения, а для их измерения разные методы, то статистические данные будут очень разнородными, несравнимыми. Например, вы хотите определить количество пар, живущих вместе, но не зарегистрировавших свои отношения, – тогда в вашем распоряжении данные, уже собранные разными государственными агентствами. Но варьирующиеся определения могут привести к проблеме с категоризацией: что означает «жить вместе»? Определяется ли это количеством проведенных вместе ночей в неделю? Или тем, где находятся личные вещи живущих вместе людей? А может, тем, где они получают почту? Некоторые органы государственной власти юридически признают однополые пары, другие – нет. Если вы соберете данные в разных местах и разными методами, ваша статистика окажется почти бессмысленной. Если методология записи, сбора и замера данных сильно варьируется в отношении ключевых моментов, то в итоге статистические данные будут отражать не то, что видится в них вам.

Последние исследования показали, что уровень безработицы среди молодежи в Испании составил 23 %, – и это поразительно. В отчете в одну группу были объединены люди, которые при других обстоятельствах оказались бы в разных: тут были и студенты, не заинтересованные в поиске работы, и те, кого только что уволили, и те, кто находился в поисках работы.

Для отслеживания безработицы в Соединенных Штатах существует шесть разных индексов (обозначенных U1–U6), которые отражают разные интерпретации понятия «безработный»[70]. Сюда относятся те, кто ищет работу, и те, кто еще учится и не ищет, и те, кому интересна работа на полный рабочий день, при том что они работают только неполный, и т. д.

В газете USA Today за июль 2015 года сообщалось, что уровень безработицы упал до 5,3 % и что это был «самый низкий уровень начиная с апреля 2008 года»[71]. Более компетентные источники, включающие агентство Associated Press, журнал Forbes и газету New York Times, называли свою причину очевидного снижения: многие безработные просто бросили попытки найти работу и потому чисто технически уже не могли считаться рабочей силой[72].

Объединение выборок, однако, не всегда приводит к неверным выводам. Вы можете объединить результаты учеников школы обоих полов, особенно если нет никаких доказательств того, что эти результаты на самом деле разные. Таким образом вы можете увеличить размер выборки (и получить более устойчивую оценку того, что изучаете). Интерпретацию затрудняют только слишком широкое определение категории (как в случае с сексуальной активностью школьников, о которой мы говорили ранее) или противоречивые определения (как с парами, живущими вместе). Если объединить выборки правильно, это поможет сделать правильный анализ данных.

Предположим, вы работаете в штате Юта. Один крупный производитель детской одежды подумывает о том, чтобы переехать в ваш штат. И вам в голову приходит мысль указать ему на высокий уровень рождаемости в Юте. Таким образом вы рассчитываете привлечь его внимание. Для этого вы заходите на сайт Census.gov и размещаете сведения о рождаемости:



Юта выглядит лучше, чем Аляска, Вашингтон, Монтана, Вайоминг, Северная и Южная Дакота и небольшие штаты Северо-Востока. Но вряд ли можно сказать, что количество рождений там зашкаливает, особенно по сравнению с Калифорнией, Техасом, Флоридой и Нью-Йорком. Но погодите-ка, та карта, которую вы составили, показывает общее число рождений, а оно обязательно тем больше, чем больше население штата. Вместо этого вы могли бы составить карту с количеством новорожденных на тысячу жителей:



Перейти на страницу:

Похожие книги