Этот элемент специально разработан для применения в логических микросхемах и в качестве самостоятельного электронного компонента, реализованного в отдельном корпусе, не выпускается. Отсюда понятно, почему элемент ТТЛ — «транзисторно-транзисторный». Его основные свойства формируют только транзисторы, а остальные элементы применяются только как вспомогательные.
Рис. 14.6.
а
— РТЛ; б — ДТЛ; в — ТТЛУ читателя наверняка появился законный вопрос: «Какой смысл иметь микросхемы, разработанные и производимые по разным технологиям, ведь все они работают одинаково?». Верно, исторически появившийся первым элемент РТЛ выполняет ту же функцию, что и «продвинутый» ТТЛШ! Реально — и об этом уже было сказано — элементы, изготовленные по разным технологиям, обладают разным быстродействием, отличаются по потреблению энергии. Быстродействие элемента определяется временем, за которое он переключается из одного логического состояния в другое. Чем быстрее смогут переключаться логические элементы, тем быстрее цифровая схема сможет совершать операции, производить вычисления. Обратите внимание на стремительно растущую частоту работы компьютерных микропроцессоров
Второй немаловажный параметр логических элементов — потребляемая энергия (потребляемая мощность, потребляемый ток). Обычно интереснее сравнивать потребляемый микросхемами ток, так как напряжение питания у них может быть разным. На заре развития цифровой техники, когда вычислительные машины создавались на основе логических элементов, спроектированных с применением электронных ламп, для их питания требовались сравнительно большие мощности в сотни киловатт. Например, машина ENIAC в час потребляла 150 кВт. Потребляемая мощность современных домашних компьютеров оценивается по типовому блоку питания, встроенному в него. Мощность блока питания обычно не превышает 200–300 Вт, а возможности современных компьютеров в миллионы раз шире, чем тех, первых, на электронных лампах.
Особенно важно потребление энергии в портативной аппаратуре с батарейным питанием. Чем меньше потребляет прибор энергии, тем дольше прослужит питающий его комплект батарей. Наиболее показательный пример — надежная работа наручных электронных часов, которые могут годами «ходить», не требуя смены крохотных «батареек», хотя внутри электронной схемы работает не одна сотня транзисторов. Другой пример — переносные ноутбуки, которые можно взять с собой в поездку и которые практически ненамного уступают по возможностям настольным компьютерам.
На сегодняшний момент ТТЛ технология подошла к границе своих возможностей по быстродействию и потреблению энергии. У профессиональных разработчиков цифровой техники она уже не считается «технологией с большим будущим». На что обращено внимание профессионалов? Ситуация без перспектив, как правило, является тупиковой. Должен же быть какой-то выход?
Выход есть. Рассматривая технологию ТТЛ, основанную на использовании биполярных транзисторов, мы совершенно забыли о том, что есть еще и полевые приборы, на управление которыми практически не нужно затрачивать энергию… Мы рассмотрим перспективные серии микросхем с пониженным энергопотреблением в следующем разделе, а в этом настало время обозначить серии ТТЛ, рекомендуемые для радиолюбительского творчества.
Сравнительная табл. 14.4, показывающая динамические параметры (быстродействие) и потребляемую мощность разных микросхем в расчете на перенос одного бита, отражает усредненные параметры. Следует помнить, что параметры конкретных микросхем могут несколько отличаться от указанных средних, но общая тенденция сохраняется.
Для большинства радиолюбительских разработок рекомендуется использовать ТТЛ и ТТЛШ серии К555
и КР1533. Серии К155 и 133 на сегодняшний день считаются устаревшими, неперспективными, поэтому по возможности их лучше исключить из арсенала и использовать в своих практических конструкциях только в крайних случаях, когда под рукой не окажется нужной микросхемы из серий К555 и КР1533. В составе этих серий есть полные аналоги всех микросхем устаревших серий, так что таким обстоятельством нужно активно пользоваться. Напряжение питания всех рекомендуемых ТТЛ микросхем — +5 В с допуском не более ±5 %.Микросхемы серий К531 и К1531 разумно применять в тех случаях, когда требуемое быстродействие всего устройства или части цифровой схемы лежит выше частоты 30 МГц. Эти микросхемы обладают значительным энергопотреблением. Установленные в приборы, они всегда нагреваются и ощущаются хорошо прогретыми при приложении к ним кончика пальца. Поэтому радиолюбителю рекомендуется работать с сериями К531 и К1531 «с оглядкой», хорошо подумав, а есть ли смысл использовать здесь микросхему этой серии? Зачастую в несложных цифровых приборах даже только одна такая микросхема, будучи установленной вместо КР1533, может в два раза увеличить потребляемый ток.