Основными в арсенале радиолюбителя являются микросхемы КМОП серии К561 и более новой К1561. В некоторых конструкциях можно встретить микросхемы серии 564 (там тот же самый кристалл, что и в К561). Они выпускаются в более компактных корпусах с планарными золочеными выводами, что, вне всякого сомнения, способствует продлению срока службы, но на порядки увеличивает цену. Эта серия непопулярна у радиолюбителей по экономическим соображениям. Вдобавок, по сравнению с серией K561, она не обладает какими-либо преимуществами, выигрышем в потреблении и другими важными свойствами. Диапазон питающих напряжений для серий 564 и К561 составляет 3…15 вольт, а для серии KP156I — 3…18 вольт.
Особое внимание читателя хочется обратить на серию KP1561, так как именно она будет интенсивно развиваться в ближайшие годы. У нее в выходных каскадах всех логических элементов установлены буферные усилители, увеличивающие нагрузочную способность и повышающие устойчивость к коротким замыканиям выходов на шины питания. К сожалению, эта серия пока содержит не так много разновидностей отечественных микросхем, как хотелось бы. Рекомендовать здесь можно использование импортных элементов, изготавливаемых по той же технологии.
Самой прогрессивной и стремительно развивающейся является отечественная серия KP1554, которая уже конкурирует по быстродействию с серией КР1533. Но обольщаться особо не стоит — микросхемы серии KP1554 только на низких частотах обладают низким потреблением, при частотах, приближающихся к предельным для ТТЛ серий, потребление обеих серий сравнивается. В чем же здесь преимущество? Серия KP1554 может работать при питающем напряжении 3 В. К сожалению, пока она мало распространена на отечественном рынке радиодеталей.
Отечественные КМОП микросхемы имеют зарубежные аналоги, табл. 14.6.
Вместо знаков ххх
в маркировке стоят цифры, указывающие на вид микросхемы. Информацию по замене конкретных импортных микросхем отечественными аналогами можно найти в книге [2].Как все это работает?
Вопросы никогда не бывают нескромными.
В отличие от ответов.
А сейчас поговорим о назначении и принципах работы простейших логических элементов и узлов, выполненных на их основе. Любой логический элемент имеет один или несколько входов и один или несколько выходов. Подавая различные комбинации цифровых сигналов на входы и фиксируя состояние выходов, можно исследовать логические схемы, составить для них таблицы истинности — таблицы, отражающие поведение схемы при всевозможных комбинациях входных сигналов. Составление таблицы истинности — это наиболее простой способ описания простых устройств цифровой техники. Существуют и другие способы, например временные диаграммы, в которых все сигналы «разворачиваются» на временной горизонтальной оси в виде графика. Можно описывать работу словами или же языком математики (есть так называемая Булева алгебра —
Все цифровые микросхемы по количеству компонентов внутри корпуса можно разделить на простейшие (они выполняют простые логические операции) и более сложные (выполняют логические функции). Последние состоят внутри из большого числа специальным образом соединенных простых логических элементов, выполняющих часто необходимые задачи, что позволяет уменьшить число корпусов микросхем в конструкции.
Один логический элемент, в зависимости от технологии его изготовления, может состоять из 5…15 компонентов (транзисторов, резисторов, диодов). На одном кристалле полупроводника за один технологический цикл изготавливается сразу несколько аналогичных логических элементов, связанных между собой только цепями питания, что позволяет уменьшить габариты и стоимость разрабатываемой конструкции. К тому же при разработке топологии печатной платы в этом случае можно использовать те элементы, для которых проще всего выполнить разводку соединения (элементы можно менять местами на электрической схеме). Чтобы не загромождать схему линиями, обычно цепи питания микросхем не рисуют (их указывают отдельно), но об их необходимости подключения не следует забывать, иначе ничто работать не будет.
Еще необходимо учитывать, что в цифровых схемах логические элементы могут иметь один из пяти вариантов выполнения выходного каскада (рис. 14.8):
Рис. 14.8.
а)
обычный выход (чаще всего комплиментарный), на котором может присутствовать либо 0, либо лог. 1 (он непосредственно подключается к входу другого логического элемента). На электрической схеме такой выход ничем не выделяют — их большинство;