Читаем Путевые заметки рассеянного магистра полностью

— И я, — неожиданно согласился Сева, — если бы только в Африке водились тигры. Но в том-то и штука, что там их нет. Так же, как и пампасов. Так что подсчитай лучше, сколько воинственных дикарей окружили нашего рассеянного математика и его спутницу Единичку.

— Огромное число! — безапелляционно заявил Нулик.

— Именно так утверждает и Магистр, — насмешливо сказала Таня, — но ведь он сам дал ключ к точному решению этой задачи и тем сам себя опроверг. По его словам, копьеносцев было ВО столько же раз больше, чем бумерангистов, НА сколько первых было больше, чем вторых. Значит, и ВО сколько и НА сколько — одно и то же число. А это возможно только в одном случае: если копьеносцев было два, а бумерангистов — четыре. Ведь четыре больше двух и В два раза и НА два.

Нулик недоверчиво покачал головой:

— Ну, это ещё надо доказать.

— И докажу. Пусть копьеносцев (к) больше, чем бумерангистов (б) в x раз. Тогда к=x*б. Но, как известно, к и НА x больше, чем б, то есть к=б+x. А две величины, порознь равные третьей, равны между собой. Выходит, что x*б=б+x. После обычных преобразований находим что x=б/(б-1). Теперь подумаем, какое целое число делится без остатка на ему предшествующее? Какое число ни возьми, оно на предшествующее без остатка не разделится. Вот хоть 20 на 19 или 25 на 24… Единственное число, которое здесь подходит, — это 2. Потому что двойка, делённая на единицу, так и. останется двойкой… Итак, бумерангистов было два, а копьеносцев в два раза больше, то есть четыре. А всего на Магистра напало колоссальное войско… из шести человек.

— Ну, если уж ты такая умная, — сказал Нулик, — скажи, что за племя буль-буль?

Увы! Ни Таня, ни кто другой ему не ответили. Как всегда в таких случаях, говорить пришлось мне.

— Скорее всего, — начал я, — Магистра и Единичку атаковали не дикари воинственного племени буль-буль, а мирные учёные, занимающиеся особой, необычной алгеброй, которая называется булевой.

— Ага, — торжествовал Нулик, — Магистр всё-таки прав: есть такая бульбулевая алгебра!

— Не булькай зря! Просто булева алгебра. По имени английского учёного, который её изобрёл. О, он сделал замечательное открытие! Но, как часто бывает, открытие это никого в те времена не заинтересовало, и оно вместе с его автором оставалось в неизвестности долгие-долгие годы. Да многим и сейчас ещё имя Джорджа Буля ничего не говорит. Зато всем хорошо знакомо имя его дочери Этель.

— Этель Буль? Никогда не слышала про такую, — пожала плечами Таня.

— Потому что Буль — её девичья фамилия, а по мужу она Войнич.

— Автор «Овода»! — всплеснула руками Таня. — Самая моя любимая книга!

— Совершенно верно, — подтвердил я. — Знаменитый автор «Овода» — дочь малоизвестного Буля. Надо сказать, малоизвестному Булю везло на знаменитых родственников. Вот, например, дядя его жены, Джордж Эверест, талантливый учёный, именем которого названа самая высокая в мире горная вершина Эверест. Одна из пяти дочерей Буля — Алиса — была даровитым математиком, другая — Люси — первой женщиной — профессором химии. И только сам Джордж Будь оставался в тени.

— А что это за алгебру он изобрёл? — полюбопытствовал президент.

— Алгебру логики. Что такое логика, надеюсь, объяснять не нужно?

— Что за вопрос! — обиделся Нулик. — Я ведь всё-таки житель Арифметического государства. А там логика в почёте.

— Уж конечно, — согласился я. — Логика широко используется в математике. А вот Буль сделал обратное. Он использовал математику в логике.

— Каким образом?

— В своём сочинении «Исследование законов мысли» Буль записал логические рассуждения математическими формулами. Так возникла булева алгебра логики.

— Но кому она нужна? — недоумевал Сева. — Не понимаю.

— Не только ты — многие не понимали. Слишком уж умозрительна была эта булева алгебра, слишком далека от жизни. Она не имела никакого практического значения, вот её и не принимали всерьёз.

— Поделом! Не выдумывай бесполезной заумщины.

— Опять ты торопишься! Да, во времена Буля алгебра его действительно не нашла себе применения. Но прошло каких-нибудь сто лет, и сейчас, в наши дни, булева алгебра используется в самых различных областях науки и техники. А самое главное — старая, никому не нужная булева алгебра широко применяется в самой молодой и в самой замечательной науке нашего времени — кибернетике.

— Ну да?! — Президент даже подскочил. — Вот не ожидал! Стало быть, то, что бесполезно сегодня, может оказаться полезным завтра?

Перейти на страницу:

Похожие книги

Физическое воспитание детей младшего школьного возраста
Физическое воспитание детей младшего школьного возраста

В настоящем пособии приведены результаты собственных исследований и данные литературы, касающиеся задач, принципов организации и содержания практической части физического воспитания детей младшего школьного возраста, отнесенных к специальной медицинской группе. В заключительной части работы представлены комплексы упражнений, используемые в системе двигательной реабилитации при отдельных заболеваниях и патологических состояниях, наиболее часто являющихся причиной зачисления в специальную медицинскую группу.Пособие предназначено для учителей физической культуры общеобразовательных учреждений, инструкторов ЛФК, студентов колледжей и вузов физической культуры.

Татьяна Евгеньевна Виленская , Т. Е. Виленская

Детская образовательная литература / Учебники и пособия для среднего и специального образования / Спорт / Книги Для Детей / Дом и досуг
Чудо-компасы
Чудо-компасы

«Удивительные, часто поражающие наше воображение действия совершают животные. Многие птицы улетают осенью на сотни и тысячи километров и весной вновь возвращаются на родину. Киты регулярно мигрируют как в Северном полушарии, так и в Южном, передвигаясь по океанским просторам без видимых ориентиров. Большие расстояния, проплывают морские черепахи, прежде чем достигнут пляжей, где откладывают яйца. Под водой, и также без определенных ориентиров, проходят сотни километров стаи сельдей, идущие на нерестилища. Совы и летучие мыши даже с заклеенными непрозрачным пластырем глазами продолжают успешно ловить добычу, первые — точно определяя ее местонахождение по шороху, а вторые — «прощупывая» пространство ультразвуковым лучом и ловя его отражение от тела добычи. Дельфины без помощи зрения, пользуясь той же эхолокацией, отличают препятствия и несъедобные предметы от пищи.А как находят пищу рыбы в абсолютно непрозрачной воде Нила, Аму-Дарьи и некоторых других рек? Чем и как помогает им электрический орган? Могут ли ориентироваться животные по магнитному полю Земли? Как находят дорогу к родному гнезду, норе или иному убежищу птицы и звери, перевезенные в заведомо неизвестное им место — иногда за десятки, сотни и даже тысячи километров от дома? Как пчелы передают друг другу информацию о том, где находятся медоносные растении?Эти и множество других, подчас еще более сложных загадок встают перед пытливым взором наблюдателя, который видит, что животные могут все это делать, но не знает, с помощью каких средств они этого достигают». В книге К. Иосифова рассказывается об изучении способности животных ориентироваться в пространстве, о тех загадках, которые уже раскрыты человеком и о тех, которые еще ждут своих исследователей.

Константин Васильевич Иосифов

Детская образовательная литература