Читаем Путевые заметки рассеянного магистра полностью

Не прошло и двух часов, как «Улитка» вошла в устье реки Замбези и стала продвигаться к северу. Мы жадно любовались живописными тропическими берегами этой судоходной реки.

Через три дня и три ночи мы приплыли в Конго. А так как река здесь кончилась и «Улитка» дальше плыть не могла, нам с Единичкой ничего не оставалось, как продолжать путешествие пешком.

Я был совсем не прочь побродить по недоступным пампасам и повторить маршрут знаменитого путешественника Ливингстона. Ведь именно сюда он и направился на поиски своего заблудившегося коллеги Стэнли.

Но прогулки в тропическом лесу, знаете ли, чреваты опасностями. Нас чуть не съели тигры. К счастью, я вовремя разжёг костёр, и хищники со злобным рычанием скрылись в дебрях.

Едва мы оправились от страха, как раздались душераздирающие вопли. Я сразу догадался, что то был воинственный клич какого-то дикого племени. И не ошибся.

Только мы успели, уцепившись за лиану, взобраться на дерево, как под. нами появилась огромная толпа дикарей. Одни размахивали копьями, другие потрясали бумерангами.

Несмотря на неудобное положение, я всё же успел сосчитать, сколько воинов окружало нас. Математика прежде всего! Оказалось, что копьеносцев было больше, чем бумерангистов. При этом больше ВО столько раз, НА сколько тех же копьеносцев было больше, чем бумерангистов.

Удивительное совпадение! И ВО сколько раз, и НА сколько — одно и то же число! А число было такое огромное (к сожалению, от страха я забыл его начисто!), что пришлось нам с Единичкой сдаваться в плен. Нас связали и повели к вождю.

Выяснилось, что дикари принадлежат к какому-то неведомому мне племени буль-буль. К удивлению моему, оказалось, что они очень любят математику, особенно алгебру. Кто бы мог подумать! Но алгебра у них какая-то необычная, я бы сказал — дикая, в общем, бульбулевая алгебра. Впрочем, многие правила такие же, как и у нас. Но иногда… иногда хоть за голову хватайся!

Вы не поверите, но эти алгебраисты не могут сложить два одинаковых выражения. Все мы знаем, что А+А=2А. У них же А плюс А так и остаётся А. И смех и грех!

Я им вежливо говорю, что они грешат против обычной логики, а они отвечают, что именно логика и подсказывает им, что А+А=А. Я стал спорить. Но разве их переспоришь! Ведь я один, а их множество. Ну скажите на милость, где это научные споры решаются большинством голосов? Только у дикарей!

Бульбульки страшно на меня обиделись, а вождь их так разгневался, что приказал нам немедленно убираться из плена. Пришлось подчиниться силе и уйти.

Освободившись от нашего присутствия, дикари возликовали и запустили нам вслед свои бумеранги. Те пролетели высоко над нашими головами и шлёпнулись наземь метров за сто впереди.

Вскоре мы подошли к грандиозному водопаду. Потоки воды широкими каскадами низвергались с невероятной высоты, а сверкающие на солнце брызги разлетались далеко вокруг.

К вершине водопада вела узкая лестница, вырубленная в скале. Все её ступеньки были украшены изображениями различных животных. Рисунки эти были выложены из множества разноцветных камешков.

Хранитель водопада с гордостью пояснил, что рисунки тут особые. На первой ступеньке уложено 100 разноцветных камешков, на второй — 101 камешек, на третьей — 102… В общем, на каждой следующей ступеньке было на один камешек больше, чем на предыдущей. А на самую верхнюю ступеньку ушло ровно 500 камешков.

Единичке захотелось хорошенько рассмотреть все рисунки, и она потянула меня на лестницу. Но хранитель сказал, что гораздо приятнее рассматривать рисунки, спускаясь вниз, а наверх лучше подняться по канатной дороге.

Единичка немедленно уселась в вагончик, но хранитель разъяснил, что вагончик имеет право везти только тех, кто сумеет сосчитать, сколько камешков уложено на всех ступеньках лестницы.

— К чему считать? — удивился я. — Достаточно воспользоваться простым правилом, изобретённым великим математиком Гауссом. Если известно, что на первой ступеньке 100 камешков, а на последней — 500, надо сложить 100 и 500 (получится 600), разделить эту сумму пополам (получится 300) и, наконец, 300 умножить на число всех ступенек, то есть на 400 (ведь 500 минус 100 — это 400). 300, умноженное на 400, равно ста двадцати тысячам. Вот сколько камешков ушло на все рисунки.

Я уселся рядом с Единичкой в вагончик, но… хранитель водопада, вместо того чтобы везти нас наверх, преспокойно расположился на нижней ступеньке лестницы и углубился в чтение африканской газеты. Очевидно, он просто не был знаком с правилом Гаусса. Хорошо, что Единичка (ох эта Единичка!) сумела-таки уговорить его. Что она ему нашептала, понятия не имею, но вскоре мы уже были наверху.

Вид оттуда изумительный, но там так холодно, что я чуть не замёрз. А термометр на вагончике как ни в чём не бывало показывал 28 градусов выше нуля! Ясно, что градусник был испорчен, хотя хранитель начисто это отрицал. Разумеется, из чувства противоречия.

Мы быстро спустились вниз, бегло осмотрели рисунки и, чтобы согреться, бодрым шагом отправились дальше.

Перейти на страницу:

Похожие книги

Физическое воспитание детей младшего школьного возраста
Физическое воспитание детей младшего школьного возраста

В настоящем пособии приведены результаты собственных исследований и данные литературы, касающиеся задач, принципов организации и содержания практической части физического воспитания детей младшего школьного возраста, отнесенных к специальной медицинской группе. В заключительной части работы представлены комплексы упражнений, используемые в системе двигательной реабилитации при отдельных заболеваниях и патологических состояниях, наиболее часто являющихся причиной зачисления в специальную медицинскую группу.Пособие предназначено для учителей физической культуры общеобразовательных учреждений, инструкторов ЛФК, студентов колледжей и вузов физической культуры.

Татьяна Евгеньевна Виленская , Т. Е. Виленская

Детская образовательная литература / Учебники и пособия для среднего и специального образования / Спорт / Книги Для Детей / Дом и досуг
Чудо-компасы
Чудо-компасы

«Удивительные, часто поражающие наше воображение действия совершают животные. Многие птицы улетают осенью на сотни и тысячи километров и весной вновь возвращаются на родину. Киты регулярно мигрируют как в Северном полушарии, так и в Южном, передвигаясь по океанским просторам без видимых ориентиров. Большие расстояния, проплывают морские черепахи, прежде чем достигнут пляжей, где откладывают яйца. Под водой, и также без определенных ориентиров, проходят сотни километров стаи сельдей, идущие на нерестилища. Совы и летучие мыши даже с заклеенными непрозрачным пластырем глазами продолжают успешно ловить добычу, первые — точно определяя ее местонахождение по шороху, а вторые — «прощупывая» пространство ультразвуковым лучом и ловя его отражение от тела добычи. Дельфины без помощи зрения, пользуясь той же эхолокацией, отличают препятствия и несъедобные предметы от пищи.А как находят пищу рыбы в абсолютно непрозрачной воде Нила, Аму-Дарьи и некоторых других рек? Чем и как помогает им электрический орган? Могут ли ориентироваться животные по магнитному полю Земли? Как находят дорогу к родному гнезду, норе или иному убежищу птицы и звери, перевезенные в заведомо неизвестное им место — иногда за десятки, сотни и даже тысячи километров от дома? Как пчелы передают друг другу информацию о том, где находятся медоносные растении?Эти и множество других, подчас еще более сложных загадок встают перед пытливым взором наблюдателя, который видит, что животные могут все это делать, но не знает, с помощью каких средств они этого достигают». В книге К. Иосифова рассказывается об изучении способности животных ориентироваться в пространстве, о тех загадках, которые уже раскрыты человеком и о тех, которые еще ждут своих исследователей.

Константин Васильевич Иосифов

Детская образовательная литература