Читаем QT 4: программирование GUI на С++ полностью

Допускающие запись итераторы (mutable iterators) имеют функции для вставки, модификации и удаления элементов в ходе просмотра контейнеров. В показанном ниже цикле из списка удаляются отрицательные числа:

QMutableListIterator i(list);

while (i.hasNext()) {

if (i.next() < 0.0)

i.remove();

}

Функция remove() всегда работает с последним пройденным элементом. Она так же ведет себя при проходе элементов в обратном направлении:

QMutableListIterator i(list);

i.toBack();

while (i.hasPrevious()) {

if (i.previous() < 0.0)

i.remove();

}

Аналогично допускающие запись итераторы в стиле Java имеют функцию setValue(), которая модифицирует последний пройденный элемент. Ниже показано, как можно заменить отрицательные числа их абсолютным значением:

QMutableListIterator i(list);

while (i.hasNext()) {

int val = i.next();

if (val < 0.0)

i.setValue(-val);

}

Кроме того, можно вставлять элемент в текущую позицию итератора с помощью функции insert(). После этого итератор перемещается в позицию между новым элементом и следующим за ним.

Кроме итераторов в стиле Java каждый класс последовательных контейнеров C имеет итераторы в стиле STL двух типов: С<Т>::iterator и C::const_iterator. Они отличаются тем, что итератор const_iterator не позволяет модифицировать данные.

Функция контейнера begin() возвращает итератор в стиле STL, ссылающийся на первый элемент контейнера (например, list[0]), в то время как функция контейнера end() возвращает итератор, ссылающийся на элемент «после последнего элемента» (например, list[5] для списка размером 5). Если контейнер пустой, функции begin() и end() возвращают одинаковое значение. Это может использоваться для проверки наличия хотя бы одного элемента в контейнере, хотя для этой цели более удобно пользоваться функцией isEmpty().

Рис. 11.5. Допустимые позиции итераторов в стиле STL.

Синтаксис применения итераторов в стиле STL моделирует синтаксис применения указателей С++. Мы можем использовать операторы ++ и —— для перехода на следующий или предыдущий элемент, а также унарный оператор * для извлечения значения элемента из позиции текущего итератора. Для вектора vector типы итераторов iterator и const_iterator определяются просто как typedef для Т * и const T *. (Так можно делать, поскольку QVector хранит свои элементы в последовательных адресах памяти.)

В показанном ниже примере каждое значение в списке QList заменяется своим абсолютным значением:

QList::iterator i = list.begin();

while (i ! = list.end()) {

*i = qAbs(*i);

++i;

}

Несколько функций Qt возвращают контейнер. Если мы хотим в цикле обработать такое возвращенное значение функции, используя итератор в стиле STL, мы должны сделать копию контейнера и в цикле обрабатывать эту копию. Например, приводимый ниже программный код показывает, как правильно следует обрабатывать в цикле список типа QList, возвращенный функцией QSplitter::sizes():

QList list = splitter->sizes();

QList::const_iterator i = list.begin();

while (i != list.end()) {

do_something(*i);

++i;

}

Ниже дается пример неправильного программного кода:

// Неправильный программный код

QList::const_iterator i = splitter->sizes().begin();

while (i != splitter->sizes().end()) {

do_something(*i);

++i;

}

Это происходит из-за того, что функция QSplitter::sizes() возвращает новый список QList по значению при каждом новом своем вызове. Если мы не сохраняем возвращенное функцией значение, С++ автоматически удалит его еще до начала итерации, оставляя нам «повисший» итератор. Дело еще усугубляется тем, что на каждом новом шаге цикла функция QSplitter::sizes() должна генерировать новую копию списка из-за вызова функции splitter->sizes().end(). Поэтому используйте общее правило: когда применяются итераторы в стиле STL, всегда следует обрабатывать в цикле копию экземпляра контейнера, возвращаемого по значению.

При использовании итераторов в стиле Java, предназначенных только для чтения, нам не надо создавать копию. Итератор обеспечит копию незаметно для нас, гарантируя всегда просмотр в цикле данных, только что возвращенных функцией. Например:

QListIterator i(splitter->sizes());

while (i.hasNext()) {

do_something(i.next());

}

Перейти на страницу:

Похожие книги

C# 4.0: полное руководство
C# 4.0: полное руководство

В этом полном руководстве по C# 4.0 - языку программирования, разработанному специально для среды .NET, - детально рассмотрены все основные средства языка: типы данных, операторы, управляющие операторы, классы, интерфейсы, методы, делегаты, индексаторы, события, указатели, обобщения, коллекции, основные библиотеки классов, средства многопоточного программирования и директивы препроцессора. Подробно описаны новые возможности C#, в том числе PLINQ, библиотека TPL, динамический тип данных, а также именованные и необязательные аргументы. Это справочное пособие снабжено массой полезных советов авторитетного автора и сотнями примеров программ с комментариями, благодаря которым они становятся понятными любому читателю независимо от уровня его подготовки. Книга рассчитана на широкий круг читателей, интересующихся программированием на C#.Введите сюда краткую аннотацию

Герберт Шилдт

Программирование, программы, базы данных
C++: базовый курс
C++: базовый курс

В этой книге описаны все основные средства языка С++ - от элементарных понятий до супервозможностей. После рассмотрения основ программирования на C++ (переменных, операторов, инструкций управления, функций, классов и объектов) читатель освоит такие более сложные средства языка, как механизм обработки исключительных ситуаций (исключений), шаблоны, пространства имен, динамическая идентификация типов, стандартная библиотека шаблонов (STL), а также познакомится с расширенным набором ключевых слов, используемым в .NET-программировании. Автор справочника - общепризнанный авторитет в области программирования на языках C и C++, Java и C# - включил в текст своей книги и советы программистам, которые позволят повысить эффективность их работы. Книга рассчитана на широкий круг читателей, желающих изучить язык программирования С++.

Герберт Шилдт

Программирование, программы, базы данных
Programming with POSIX® Threads
Programming with POSIX® Threads

With this practical book, you will attain a solid understanding of threads and will discover how to put this powerful mode of programming to work in real-world applications. The primary advantage of threaded programming is that it enables your applications to accomplish more than one task at the same time by using the number-crunching power of multiprocessor parallelism and by automatically exploiting I/O concurrency in your code, even on a single processor machine. The result: applications that are faster, more responsive to users, and often easier to maintain. Threaded programming is particularly well suited to network programming where it helps alleviate the bottleneck of slow network I/O. This book offers an in-depth description of the IEEE operating system interface standard, POSIX (Portable Operating System Interface) threads, commonly called Pthreads. Written for experienced C programmers, but assuming no previous knowledge of threads, the book explains basic concepts such as asynchronous programming, the lifecycle of a thread, and synchronization. You then move to more advanced topics such as attributes objects, thread-specific data, and realtime scheduling. An entire chapter is devoted to "real code," with a look at barriers, read/write locks, the work queue manager, and how to utilize existing libraries. In addition, the book tackles one of the thorniest problems faced by thread programmers-debugging-with valuable suggestions on how to avoid code errors and performance problems from the outset. Numerous annotated examples are used to illustrate real-world concepts. A Pthreads mini-reference and a look at future standardization are also included.

David Butenhof

Программирование, программы, базы данных