Читаем QT 4: программирование GUI на С++ полностью

Типы данных К и T в ассоциативном массиве QMap могут быть базовыми типами (например, int и double), указатели и классы, которые имеют стандартный конструктор, конструктор копирования и оператор присваивания. Кроме того, тип К должен обеспечивать оператор operator < (), поскольку QMap применяет его для хранения элементов в порядке возрастания значений ключей.

Класс QMap имеет две удобные функции, keys() и values(), которые особенно полезны при работе с небольшими наборами данных. Они возвращают списки типа QList ключей и значений ассоциативного массива.

Обычно ассоциативные массивы имеют одно значение для каждого ключа: если новое значение присваивается существующему ключу, старое значение заменяется новым, чтобы не было элементов с одинаковыми ключами. Можно иметь несколько пар ключ—значение с одинаковым ключом, если использовать функцию insertMulti() или удобный подкласс QMultiMap. QMap имеет перегруженную функцию values(const К &), которая возвращает список QList со всеми значениями заданного ключа. Например:

QMultiMap multiMap;

multiMap.insert(1, "one"); multiMap.insert(1, "eins");

multiMap.insert(1, "uno");

QList vals = multiMap.values(1);

QHash — это структура данных, которая хранит пары ключ—значение в хэш—таблице. Ее интерфейс почти совпадает с интерфейсом QMap, однако здесь предъявляются другие требования к шаблонному типу К и операции поиска обычно выполняются значительно быстрее, чем в QMap. Еще одним отличием является неупорядоченность значений в QHash.

Кроме стандартных требований, которым должен удовлетворять любой тип значений, хранимых в контейнере, для типа К в QHash должен быть предусмотрен оператор operator == () и должна быть обеспечена глобальная функция qHash(), возвращающая хэш—код для ключа. Qt уже имеет перегрузки функции qHash() для целых типов, указателей, QChar, QString и QByteArray.

QHash автоматически выделяет некий первичный объем памяти для своей внутренней хэш—таблицы и изменяет его, когда элементы вставляются или удаляются. Кроме того, можно обеспечить более тонкое управление производительностью с помощью функции reserve(), которая устанавливает ожидаемое количество элементов в хэш—таблице, и функции squeeze(), которая сжимает хэш—таблицу, учитывая текущее количество элементов. Обычно действуют так: вызывают reserve(), обеспечивая максимальное ожидаемое количество элементов, затем добавляют данные и, наконец, вызывают squeeze() для сведения к минимуму расхода памяти, если элементов оказалось меньше, чем ожидалось.

Хэш-таблицы обычно имеют одно значение на каждый ключ, однако одному ключу можно присвоить несколько значений, используя функцию insertMulti() или удобный подкласс QMultiHash.

Кроме QHash в Qt имеется также класс QCache, который может использоваться для создания кэша объектов, связанных с ключом, и контейнер QSet, который хранит только ключи. Оба класса реализуются на основе QHash и предъявляют к типу К такие же требования, как и QHash.

Для прохода по всем парам ключ—значение, находящимся в ассоциативном контейнере, проще всего использовать итератор в стиле Java. Поскольку итераторы должны обеспечивать доступ и к ключу, и к значению, итераторы в стиле Java работают с ассоциативными контейнерами немного иначе, чем с последовательными контейнерами. Основное отличие проявляется в том, что функции next() и previous() возвращают пару ключ—значение, а не просто одно значение. Компоненты ключа и значения можно извлечь из объекта пары с помощью функций key() и value(). Например:

QMap map;

int sum = 0;

QMapIterator i(map);

while (i.hasNext())

sum += i.next().value();

Если требуется получить доступ как к ключу, так и к значению, мы можем просто игнорировать значение, возвращаемое функциями next() и previous(), и использовать функции итератора key() и value(), которые работают с последним пройденным элементом.

QMapIterator i(map);

while (i.hasNext()) {

i.next();

if (i.value() > largestValue) {

largestKey = i.key();

largestValue = i.value();

}

}

Допускающие запись итераторы имеют функцию setValue(), которая модифицирует значение, содержащееся в текущем элементе:

QMutableMapIterator i(map);

while (i.hasNext()) {

i.next();

if (i.value()< 0.0)

i.setValue(-i.value());

}

Перейти на страницу:

Похожие книги

C# 4.0: полное руководство
C# 4.0: полное руководство

В этом полном руководстве по C# 4.0 - языку программирования, разработанному специально для среды .NET, - детально рассмотрены все основные средства языка: типы данных, операторы, управляющие операторы, классы, интерфейсы, методы, делегаты, индексаторы, события, указатели, обобщения, коллекции, основные библиотеки классов, средства многопоточного программирования и директивы препроцессора. Подробно описаны новые возможности C#, в том числе PLINQ, библиотека TPL, динамический тип данных, а также именованные и необязательные аргументы. Это справочное пособие снабжено массой полезных советов авторитетного автора и сотнями примеров программ с комментариями, благодаря которым они становятся понятными любому читателю независимо от уровня его подготовки. Книга рассчитана на широкий круг читателей, интересующихся программированием на C#.Введите сюда краткую аннотацию

Герберт Шилдт

Программирование, программы, базы данных
C++: базовый курс
C++: базовый курс

В этой книге описаны все основные средства языка С++ - от элементарных понятий до супервозможностей. После рассмотрения основ программирования на C++ (переменных, операторов, инструкций управления, функций, классов и объектов) читатель освоит такие более сложные средства языка, как механизм обработки исключительных ситуаций (исключений), шаблоны, пространства имен, динамическая идентификация типов, стандартная библиотека шаблонов (STL), а также познакомится с расширенным набором ключевых слов, используемым в .NET-программировании. Автор справочника - общепризнанный авторитет в области программирования на языках C и C++, Java и C# - включил в текст своей книги и советы программистам, которые позволят повысить эффективность их работы. Книга рассчитана на широкий круг читателей, желающих изучить язык программирования С++.

Герберт Шилдт

Программирование, программы, базы данных
Programming with POSIX® Threads
Programming with POSIX® Threads

With this practical book, you will attain a solid understanding of threads and will discover how to put this powerful mode of programming to work in real-world applications. The primary advantage of threaded programming is that it enables your applications to accomplish more than one task at the same time by using the number-crunching power of multiprocessor parallelism and by automatically exploiting I/O concurrency in your code, even on a single processor machine. The result: applications that are faster, more responsive to users, and often easier to maintain. Threaded programming is particularly well suited to network programming where it helps alleviate the bottleneck of slow network I/O. This book offers an in-depth description of the IEEE operating system interface standard, POSIX (Portable Operating System Interface) threads, commonly called Pthreads. Written for experienced C programmers, but assuming no previous knowledge of threads, the book explains basic concepts such as asynchronous programming, the lifecycle of a thread, and synchronization. You then move to more advanced topics such as attributes objects, thread-specific data, and realtime scheduling. An entire chapter is devoted to "real code," with a look at barriers, read/write locks, the work queue manager, and how to utilize existing libraries. In addition, the book tackles one of the thorniest problems faced by thread programmers-debugging-with valuable suggestions on how to avoid code errors and performance problems from the outset. Numerous annotated examples are used to illustrate real-world concepts. A Pthreads mini-reference and a look at future standardization are also included.

David Butenhof

Программирование, программы, базы данных