Читаем Радио?.. Это очень просто! полностью

Л. — Нет, дорогой Незнайкин. Кроме усовершенствования передающих антенн, для уменьшения интенсивности замираний применяют и другие способы борьбы, уже в самом приемнике. Зная, что к приемной антенне приходят волны с сильно изменяющейся напряженностью, пытаются поддержать постоянство громкости приема на выходе приемника путем соответствующей регулировки усиления.

Н. — Значит, если я правильно понял, изменение в напряженности компенсируется изменением степени усиления. Когда интенсивность волны ослабевает, усиление увеличивают и, наоборот, когда напряженность волны возрастает, усиление уменьшают.

Л. — Именно так и поступают. Когда вследствие замираний сигнал доходит очень ослабленным, мы увеличиваем чувствительность приемника, повышая усиление каскадов высокой частоты (а если это супергетеродин — то и каскадов промежуточной частоты).

Н. — Однако я не вижу, каким способом можно регулировать усиление электронной лампы.


ТАИНСТВЕННАЯ «ТОЧКА X»



Л. — Ты уже знаешь, что чем больше крутизна характеристики лампы, тем лучше она усиливает. Для одной и той же лампы крутизна изменяется в зависимости от того, на каком участке характеристики лампа работает. Положение рабочей точки на характеристике определяется величиной поданного на ее сетку отрицательного смещения…

Н. — Я тебя перебью, Любознайкин. Я отлично помню, что характеристика лампы в разных точках имеет различную крутизну. Наибольшее ее значение относится к прямолинейной части кривой. Если мы будем увеличивать смещение, то войдем в зону нижнего изгиба характеристики, где крутизна будет стремительно убывать (рис. 104,а). Однако ты мне много раз повторял, что эта часть характеристики является запретной зоной. Ведь усиление без искажений возможно только на прямолинейном участке.



Рис. 104.Характеристики лампы.

а — с короткой характеристикой; б — с переменной крутизной (с удлиненной характеристикой).



Л. — Это так, когда мы имеем дело с обычными лампами и значительными амплитудами сигнала, как, например, в каскадах низкой частоты. Но на высокой и промежуточной частотах амплитуда сигнала еще очень мала и в этом случае достаточно иметь приблизительно прямолинейный участок в области рабочей точки. Для этого созданы специальные лампы, крутизна характеристики которых изменяется сравнительно плавно, так что изгиб характеристики нерезко выражен (рис. 104,б). Такие лампы называются лампами с переменной крутизной. Конечно, это не означает, что крутизна всех других ламп постоянна, а лишь то, что в этих специальных лампах можно выбирать рабочую точку на участках с различной крутизной.

Н. — Если бы я знал о существовании ламп с переменной крутизной, я бы не стал возражать. Характеристика с переменной крутизной показывает, что если на сетку лампы дать большое напряжение смещения, она не только не усилит, но даже ослабит поданные на ее сетку сигналы.

Л. — Это то, что нужно. Благодаря этому нам удается поддерживать нормальный выходной уровень громкости даже при очень интенсивных сигналах. Чтобы регулировать усиление при помощи ламп с переменной крутизной, можно использовать потенциометр R1, позволяющий регулировать величину сеточного смещения (рис. 105).



Рис. 105.Регулировка усиления с помощью потенциометра R, изменяющего отрицательное напряжение на сетке лампы.


Н. — Но это ужасно! Тогда надо, чтобы слушатель, не отпуская ручки потенциометра, постоянно вертел ее для компенсации изменений силы приема при наличии замираний. Какое же удовольствие может быть от музыкальной передачи при таких условиях!..



Л. — К счастью, имеется возможность сделать такую регулировку автоматической. Для этого в приемнике надо найти точку, потенциал которой становится более отрицательным, когда принимаемые сигналы усиливаются.

— Посмотри на схему диодного детектора (рис. 106), которую ты знаешь уже давно. Точка, о которой идет речь, является концом резистора R, обозначенным буквой X. Ток высокой частоты, выпрямленный. Диодом, создает на этом резисторе падение напряжения, примем потенциал точки X но отношению к корпусу имеет отрицательный знак. Это напряжение пропорционально средней интенсивности поданного на диод сигнала.



Рис. 106. В точке X образуется отрицательное напряжение, пропорциональное средней интенсивности высокочастотного сигнала.


Перейти на страницу:

Все книги серии Массовая радиобиблиотека

Похожие книги

Теория струн и скрытые измерения Вселенной
Теория струн и скрытые измерения Вселенной

Революционная теория струн утверждает, что мы живем в десятимерной Вселенной, но только четыре из этих измерений доступны человеческому восприятию. Если верить современным ученым, остальные шесть измерений свернуты в удивительную структуру, известную как многообразие Калаби-Яу. Легендарный математик Шинтан Яу, один из первооткрывателей этих поразительных пространств, утверждает, что геометрия не только является основой теории струн, но и лежит в самой природе нашей Вселенной.Читая эту книгу, вы вместе с авторами повторите захватывающий путь научного открытия: от безумной идеи до завершенной теории. Вас ждет увлекательное исследование, удивительное путешествие в скрытые измерения, определяющие то, что мы называем Вселенной, как в большом, так и в малом масштабе.

Стив Надис , Шинтан Яу , Яу Шинтан

Астрономия и Космос / Научная литература / Технические науки / Образование и наука
История электротехники
История электротехники

Книга посвящена истории электротехнической науки и промышленности как в нашей стране, так и за рубежом. В ней рассмотрены все основные этапы развития электротехники, начиная с ее зарождения и до наших дней. Показана роль отечественных и зарубежных ученых, внесших наибольший вклад в развитие электротехники.Подробно и конкретно рассмотрены основные достижения различных отраслей электротехники: электроэнергетики; электромеханики; электротехнологии; электрического транспорта; светотехники; электрических материалов и кабелей; промышленной электроники и электроизмерительной техники.В главе «Персоналии» приведены краткие биографические сведения о крупнейших отечественных и зарубежных ученых и специалистах в области электротехники.

авторов Коллектив , Коллектив авторов

Технические науки / Образование и наука
Главный конструктор В.Н. Венедиктов. Жизнь, отданная танкам
Главный конструктор В.Н. Венедиктов. Жизнь, отданная танкам

В книге собраны воспоминания о главном конструкторе танкового КБ в Нижнем Тагиле В.Н. Венедиктове — автора очерка и составителя сборника Э.Б. Вавилонского, а также сорока современников главного конструктора. Это — ближайшие соратники Венедиктова по работе в УКБТМ, руководители «Уралвагонзавода», конструкторы, исследователи, испытатели бронетанковой техники, партийные и профсоюзные работники, участники художественной самодеятельности УКБТМ, люди, работавшие с ним многие годы и жившие рядом, и те, кто знал главного конструктора по отдельным встречам. Все это расширяет представление о В.Н. Венедиктове, раскрывает его личность, характер, склонности, интересы, привычки, позволяет глубже понять истоки целеустремленности главного конструктора, мотивы его поступков, помогает находить объяснение успехам в научной и инженерной деятельности. Книга рассчитана на читателей, интересующихся историей танкостроения.

Игорь Николаевич Баранов , И. Н. Баранов

Военное дело / Энциклопедии / Технические науки / Военное дело: прочее