Л.
— Нo нельзя, чтобы он пропускал более широкую полосу частот. Иначе возникнут помехи из-за биений с частотами соседних станций. И вот ты перед лицом этой ужасной дилеммы, которая противопоставляет качество передачи и избирательность: чем меньше избирательность, тем выше качество воспроизведения.Н.
— Если уж выбирать между избирательностью и качеством звучания, то я высказываюсь за второе.Л.
— К чему добиваться правильного воспроизведения всех частот, если эту передачу будет покрывать свист помехи?Н.
— Но разве не существует возможности полностью пропустить полосу 9 кгц и не пропустить больше ничего другого вне этой полосы?Л.
— Да, по крайней мере с достаточным приближением. Однако осуществить это при помощи одиночного колебательного контура нельзя. ЕгоН.
— Что это такое? Ты никогда об этом не говорил.Л.
— Так называют кривую, которая показывает, как изменяется в колебательном контуре интенсивность колебаний в зависимости от частоты. Очевидно, что наибольшая амплитуда колебаний в контуре будет в момент резонанса. По мере изменения частоты интенсивность колебаний в контуре более или менее резко падает в зависимости от сопротивления контура по высокой частоте.Если контур имеет большое сопротивление или, как говорят, обладает большим затуханием, то его резонансная кривая будет иметь более пологую форму (рис. 111) и сможет пропустить большую полосу частот. Но наряду с этим он будет и малоизбирательным.
Рис. 111.
Если, наоборот, контур имеет очень малое затухание (рис. 112), то он пропускает только узкую полосу частот. При высокой избирательности он не пропустит всю совокупность боковых частот. Идеальная резонансная кривая должна была бы иметь форму прямоугольника с шириной 9 кгц. Контур с такой кривой пропускал бы полосу частот только в 9 кгц и ничего другого.
Рис. 112.
Н.
— Если ты говоришь, что такая кривая является идеальной, значит ее невозможно получить?Л.
— Да, но к ней можно приблизиться с помощью так называемыхПростейшие полосовые фильтры состоят из двух связанных между собой колебательных контуров с малым затуханием, настроенных на несущую частоту. Путем изменения связи между ними можно получить более или менее широкую резонансную кривую, по форме приближающуюся к прямоугольной (рис. 113).
Рис. 113.
Н.
— А как осуществить связь между двумя колебательными контурами, составляющими полосовой фильтр?Л.
— Самый простой способ — соединить их индуктивно, что и является трансформатором с настроенными первичной и вторичной обмотками (рис. 114), или осуществить связь при по мощи конденсатора малой емкости (рис. 115). В более сложных фильтрах связь осуществляется через реактивное сопротивление (рис. 116).Рис. 114.
Рис. 115.
Рис. 116.
Н.
— Каким же образом общее сопротивление может служить элементом связи?Л.
— Ток, протекающий в первом контуре, создает на этом сопротивлении падение напряжения, которое приложено ко второму контуру и возбуждает в нем ток. Если сопротивление мало, то и развиваемое на нем напряжение будет малым, что равноценно слабой связи.Н.
— Какой тип реактивного сопротивления применяется чаще всего?Л.
— Чаще всего применяется емкостное (рис. 117) и реже индуктивное сопротивление (рис. 118). Чтобы получить малое емкостное сопротивление, надо включать конденсатор достаточно большой емкости, тем большей, чем меньше частота колебаний.Рис. 117.
Рис. 118.
Н.
— Да я вспоминаю, что емкостное сопротивление уменьшается с повышением частоты и увеличением емкости. Так как индуктивное сопротивление ведет себя диаметрально противоположно, я полагаю, что в фильтрах с индуктивным сопротивлением для получения слабой связи надо включать катушку с малой индуктивностью, тем меньшей, чем выше частота.