Сцинтилляционный метод широко применяется в настоящее время и для регистрации электронного и гамма-излучения. Однако электроны вызывают настолько слабые вспышки света на сцинтиллирующем экране, что регистрация их возможна лишь с помощью специального прибора. Таким прибором является фотоумножитель, перед стеклянным окошком которого ставится сцинтиллирующий экран.
Фотоумножитель представляет собой откаченный до глубокого вакуума небольшой цилиндрический стеклянный баллон, в котором размещены катод, эмиттеры и анод (коллектор). На рис. 18 приведена схема устройства и включения электронного умножителя. На эмиттеры подается со специального прибора (делителя напряжения) возрастающее от первого к последующим эмиттерам напряжение. Анод является фактически последним в ряду эмиттеров и к нему так же подается напряжение, большее, чем у последнего эмиттера. На катод подается отрицательное напряжение порядка 1000–1500 вольт. Излучение радиоактивных изотопов попадает на сцинтиллирующий экран или специальный кристалл — фосфóр, который ставится перед окном фотоумножителя. Под действием световых фотонов с поверхности катода вырываются электроны, которые фокусируются и ускоряются в электрическом поле между катодом и первым эмиттером. Обычно используют сурмяно-цезиевые катоды, из которых электроны легко выбить. Попадая на первый эмиттер, электроны вырывают из его поверхности новые электроны в большем числе. Последние под действием электрического поля движутся, все ускоряясь, ко второму эмиттеру и вырывают из его поверхности еще большее число электронов, которые устремляются к следующему эмиттеру, и так до тех пор, пока все электроны не попадут на анод. Число электронов, попадающих на анод, в сто тысяч — миллион раз больше числа электронов, срывающихся с катода. Число последних обычно не превышает тысячи. Таким образом, на появление в кристалле фосфóра одной ионизирующей частицы радиоактивного излучения фотоэлектронный умножитель отвечает кратковременным электрическим сигналом, сила которого достаточна для регистрации его с помощью радиолампового усилителя и электромеханического счетчика. Каждому электрону или фотону, попадающему на катод фотоумножителя, электромеханический счетчик отвечает перемещением стрелки на одно деление.
В качестве фосфóров можно использовать кристаллы иодистого натрия с таллием, антрацена, нафталина, вольфрамата кальция, некоторые жидкости и растворы, например раствор терфенила в ксилоле.
Сцинтилляционные счетчики отличаются большой эффективностью регистрации всех видов радиоактивного излучения.
Мы описали лишь наиболее распространенные методы регистрации радиоактивных излучений.
В основе большинства явлений природы и искусственных процессов, проводимых в лабораториях и промышленности, лежит движение атомов и молекул. С движением атомов и молекул связаны: течение рек, движение воздуха, рост растений, разложение их при гниении, усвоение пищи животным и человеком, горение ракеты, взрыв динамита и т. д. Атомы во многих из этих процессов не только перемещаются, но и меняют партнеров, с которыми они были соединены, образуют новые химические соединения, новые вещества. Изучение природных и лабораторных процессов, следовательно, связано с наблюдением за перемещением атомов. Наука нашла много тончайших методов исследования, однако один из этих методов отличается такими возможностями, которые не таят в себе другие. Он позволяет наблюдать движение в самых сложных и скрытых химических и физических процессах и называется методом «меченых атомов».
Ученые давно мечтали о том, чтобы пометить атомы, как метят птиц и других животных, за которыми хотят провести наблюдение. Кольцо на ноге птицы или какая-либо другая отметка на теле животного дает возможность определить, далеко ли животное уходит от места метки, куда и какими путями улетают на зиму птицы, как долго живут рыбы и т. д. С помощью таких меток удалось, например, установить, сколько лет живут щуки, что угри из рек Европы и Америки уходят метать икру в Саргассово море, где умирают и откуда через несколько лет молодое поколение угрей приплывает в реки Западной Европы и Америки.
Метод меток распространен довольно широко. Так, в поисках подземного пути рек в горных местностях гидрологи примешивают к воде рек краски, которые позволяют доказать по выходу окрашенной воды из-под земли в нескольких километрах ниже по течению от места, где была влита краска, связь двух рек между собою. Так с помощью флуоресцена — краски, которая даже при очень сильном разбавлении легко заметна, удалось доказать подземную связь Дуная с рекой, текущей от нее в нескольких километрах.