Читаем Рассказ предка полностью

Но это все исключения, упоминаемые из-за их редкости и составляющие разительный контраст с симметричным миром нашего примитивного червя и его потомков. У нашей ползающей модели есть левая и правая сторона, которые являются зеркальными отображениями друг друга. Органы имеют тенденцию возникать попарно, и там, где есть исключения, такие как разноглазый бриллиантовый кальмар, мы замечаем их и объясняем.

Как насчет глаз? Правда ли, что первое двусторонне-симметричное животное имело глаза? Недостаточно сказать, что у всех современных потомков Копредка 26 есть глаза. Недостаточно, потому что различные разновидности глаз очень несхожи: до такой степени, что считалось, что «глаз» был развит независимо больше чем 40 раз различными представителями животного царства (Я обсудил это подробно в «Восхождении на пик Невероятности», в главе, названной «Сорокакратный путь к просвещению», и я вернусь к этому в конце этой книги.). Как мы согласуем это с утверждением, что у Копредка 26 были глаза?

Чтобы дать интуитивный ответ, позвольте мне сначала заметить, что то, что, независимо развилось, как утверждают, 40 раз, было, по сути, не светочувствительностью, а формирующей изображение оптикой. Камерный глаз позвоночных и фасеточный глаз ракообразных развили свою оптику (работающую на совершенно различных принципах) независимо друг от друга. Но оба этих глаза происходят от одного органа общего предка (Копредка 26), который был, вероятно, некоторой разновидностью глаза.

Доказательство является генетическим, и оно убедительно. У плодовой мушки дрозофилы есть ген, названный слепым. Генетики имеют порочную привычку называть гены тем, что получается неправильным, когда они мутируют. Слепой ген обычно отрицает свое название, создавая глаза. Когда он мутирует и не в состоянии оказывать свой нормальный эффект на развитие, у мухи отсутствуют глаза, отсюда и название. Это – нелепо запутывающий обычай. Чтобы избежать этого, я не буду ссылаться на слепой ген, а буду использовать понятное сокращение ey. Ген ey обычно создает глаза, и мы знаем это, потому что, когда он работает неправильно, мухи оказываются слепыми. Теперь история начинает становиться интересной. Есть очень похожий ген у млекопитающих, названных Pax6, также известный как ген маленьких глаз у мышей, и ген аниридии (отсутствия радужной оболочки) у людей (снова назван по отрицательному эффекту своей мутантной формы).

Последовательность ДНК человеческого гена аниридии более подобна гену ey плодовой мушки, чем другим человеческим генам. Они, должно быть, унаследованы от общего предка, который был, конечно, Копредком 26. Снова же, я буду называть его ey. Уолтер Геринг (Walter Gehring) и его коллеги в Швейцарии провели крайне замечательный эксперимент. Они ввели мышиный эквивалент гена ey в эмбрион плодовой мушки, что имело поразительный результат. Введенный в часть эмбриона плодовой мушки, которой было суждено стать ногой, он заставлял потенциально взрослую муху выращивать дополнительный «смещённый» глаз на ноге. Кстати, это был глаз мухи: фасеточный глаз, а не глаз мыши. Я не думаю, что существует какое-либо доказательство, что муха могла им видеть, но у него были несомненные свойства приемлемого фасеточного глаза. Инструкция, данная геном ey, похоже, была такой: «выращивайте здесь глаз такого вида, который Вы обычно выращиваете». Факт, что ген у мышей и мух не только похож, но и вызывает развитие глаз у обоих, является очень убедительным доказательством, что он присутствовал у Копредка 26, и в меру убедительным доказательством, что Копредок 26 мог видеть, пускай даже просто наличие или отсутствие света. Возможно, когда будет исследовано больше генов, тот же аргумент может быть обобщен от глаз до других частей тела. Фактически в некотором смысле, это уже было сделано – мы рассмотрим этот вопрос в «Рассказе Плодовой Мушки».

Мозг, находящийся на переднем конце по причинам, которые мы обсудили, должен установить нервный контакт с остальным телом. У животного в форме червя разумно воплотить это с помощью главного кабеля, основного нервного тяжа, проходящего вдоль тела, вероятно, с боковыми ветвями на определенном расстоянии вдоль тела, чтобы осуществлять местный контроль и получать местную информацию. У двусторонне-симметричного животного, такого как нереида или рыба, нервный тяж должен проходить либо ближе к спинной, либо ближе к брюшной стороне от пищеварительного трактата, и здесь мы находим одно из главных различий между нами, вторичноротыми с одной стороны и первичноротыми, присоединившимися к нам в таком большом количестве, с другой. У нас спинной нервный тяж проходит вдоль спины. У типичного первичноротого, такого как нереида или многоножка, он находится с брюшной стороны от пищеварительного канала.

Перейти на страницу:

Похожие книги