Если граждане России не хотят гибнуть в техногенных катастрофах, они должны уважать науку и слушать ее. И особенно это должны делать представители власти и депутаты: они летают чаще рядовых граждан, им и предстоит первыми гибнуть в авиакатастрофах, предотвращать которые не желают федеральные агентства и инспектора, призванные следить за безопасностью жизни людей. Депутатам надо следить за деятельностью органов власти (и особенно — контролирующих органов), требовать от них исполнения своих обязанностей. А гражданам России на выборах надо выбирать таких депутатов и такие политические партии, которые заботятся о жизнях граждан, борются с причинами техногенных катастроф и требуют такой же борьбы от представителей власти.
ЧАСТЬ II
§ 10. Разъяснение загадок
В предыдущих разделах основной задачей автора было обеспечение доступности изложения. Не использовались никакие математические средства, кроме знакомых каждому по средней школе простейших алгебраических уравнений. При этом, естественно, не удавалось разъяснить некоторые тонкие вопросы: почему, например, аварии, причиной которых является встреча с «особым» объектом, обладают особенными чертами, описанными в
В настоящей второй части мы разъясним эти загадки, но для понимания их от читателя потребуется — в отличие от первой части — знание математики в объеме технического вуза и, в частности, знакомство с простейшими линейными дифференциальными уравнениями с постоянными коэффициентами и методами расчета устойчивости их решений.
Рассмотрим электропривод постоянного тока, математической моделью которого является простое дифференциальное уравнение первого порядка:
где ω — частота вращения, і — ток якоря, который в регулируемых приводах является управляющим воздействием,
Обозначим через
Если момент сопротивления используемого механизма является стационарным случайным процессом со спектром
то для простейшего случая α = 1 переменная
Система трех дифференциальных уравнений (10)—(12) является математической моделью электропривода как объекта управления. Колебания частоты вращения можно уменьшить за счет регулятора с обратной связью. Пусть в этом регуляторе управляющее воздействие х2
формируется в функции от остальных переменных по закону:х2
= -X1 - 2х3 —х4 (13)Тогда система четырех уравнений (10), (12), (13) является математической моделью замкнутой системы управления. Уравнения (10)—(12) типичны для многих электроприводов, а формируя управляющее воздействие в виде (13) мы следуем известным рекомендациям А. М. Летова. Для удобства дальнейших расчетов мы округлили параметры электропривода до целых чисел, но в целом система уравнений (10), (12), (13) отражает вполне типичную практическую ситуацию.
Исследуем устойчивость этой системы и влияние на устойчивость изменений параметра
Устойчивость замкнутой системы зависит от корней характеристического полинома (т. е. от «собственных значений» системы), а характеристический полином системы (10), (12), (13) равен легко вычисляемому определителю:
Мы убеждаемся, что характеристический полином замкнутой системы имеет три корня (три «собственных значения»):
(один из корней — кратный) и эти корни отрицательны для всех
Таким образом, замкнутая система устойчива и сохраняет устойчивость не только при малых, но и при больших отклонениях параметра
Решения системы уравнений (10), (12), (13) имеют вид
где C1
,Однако момент сопротивления х3
и особенно его производную х4 очень трудно непосредственно измерить и ввести в канал обратной связи. Поэтому целесообразно исключить из уравнения объекта управления и регулятора переменные
является символом оператора дифференцирования):