Декарт стремится к простоте даже в математической символизации мысли и предлагает без необходимости не перегружать ее выражение геометрическими символами. Ему удалось разработать систему математической символики, которой мы пользуемся до сих пор. Но, как видно дальше из текста, он сам применяет ее для выражения формы мысли вообще.
Впрочем, как мы уже говорили, если из тех бесчисленных измерений, которые может рисовать наше воображение, нужно рассматривать не более двух одновременно одним взглядом или одним актом интуиции, то важно сохранять в памяти все остальные таким образом, чтобы они легко представлялись всякий раз, когда в них будет нужда. По-видимому, для этой цели природа и создала память. Но так как эта способность часто страдает погрешностями, то, для того чтобы мы не были вынуждены отрывать часть нашего внимания для ее освежения в то время, как мы заняты другими мыслями, искусство весьма кстати изобрело применение письменности. Благодаря этому изобретению мы ничего не возлагаем на память, но, свободно и целиком посвятив свое воображение идеям настоящего момента, изображаем на бумаге все, что требуется сохранить, посредством чрезвычайно простых фигур, дабы, рассмотрев каждую вещь в отдельности по правилу IX, мы могли, по правилу XI обозреть их все быстрым движением мысли и охватить одновременно наибольшее их число актом интуиции.
Декарт выработал современный вид алгебраического языка. Именно он предложил использовать для известных величин начальные буквы алфавита:
Следовательно, все, что для разрешения трудности надлежит рассматривать как единицу, мы будем обозначать одним только знаком, который можно изображать ad libitum, но для большего удобства мы воспользуемся строчными буквами
Для того чтобы все это было более понятно, обратим внимание прежде всего на то, что счетчики имеют обыкновение обозначать отдельные величины многими единицами или каким-либо числом; мы же здесь отвлечемся от чисел не менее, чем несколько ранее от геометрических фигур или от каких-либо других вещей. Мы делаем это не только во избежание скуки от длинных и ненужных вычислений, но в особенности еще и для того, чтобы те части предмета, которые составляют сущность трудности, были всегда отчетливо видны и не скрывались за бесполезными числами. Так, например, если нужно найти основание прямоугольного треугольника, данные катеты которого выражаются в числах 9 и 12, то счетчик скажет, что оно равно