Более того, целый класс неформальных ошибок возникает из-за нашей склонности мыслить в категориях черного и белого. Здесь и
Ответ Витгенштейна Лейбницу и Аристотелю — не просто тема для обсуждения на философских семинарах. Многие из наших яростных споров и разногласий порождены попытками примирить расплывчатые понятия семейного сходства с классическими категориями, определенными логикой и законом. Можно ли считать оплодотворенную яйцеклетку «человеком»? Был ли у Билла и Моники «секс»? Внедорожник на платформе пикапа — это еще «легковой автомобиль» или уже «грузовик»? (Эта классификация позволила вывести на американские дороги миллионы машин, удовлетворяющих пониженным стандартам безопасности и нормам выбросов.) А не так давно я получил по электронной почте вот такое письмо от Демократической партии:
На этой неделе республиканская фракция в Палате представителей проталкивает законопроект, согласно которому применительно к школьным завтракам пицца будет классифицироваться как «овощи». Почему? Потому что конгрессмены-республиканцы активно лоббируют интересы производителей замороженной пиццы… В этом республиканском Конгрессе продается и покупается практически все — в том числе буквальное значение слова «овощ» — и в этот раз за счет здоровья наших детей. Подпишите эту петицию и расскажите всем: пицца — не овощ.
Логическое вычисление и ассоциация на основе паттернов
Если многие наши суждения настолько нечеткие, что их невозможно выразить средствами логики, как мы вообще думаем? Как — в отсутствие разграничителей необходимых и достаточных условий — мы приходим к общему мнению, что Крис Дженнер, например, мать, футбол — спорт, а пицца, что бы там ни говорили конгрессмены-республиканцы, не овощ? Если рациональность прописана у нас в сознании не в виде перечня высказываний и цепи логических операций, тогда как она там прописана?
Один из ответов может подсказать группа когнитивных моделей, которые называются ассоциаторами паттернов, перцептронами, коннекционными сетями, моделями параллельной распределенной обработки, искусственными нейронными сетями и системами глубокого обучения[142]
. Основная идея такова: вместо того, чтобы манипулировать строчками символов по определенным правилам, интеллектуальная система накапливает десятки, тысячи и миллионы градуированных сигналов, каждый из которых отражает степень выраженности какого-либо свойства.