Читаем Разберись в Data Science полностью

И все же, если поразмыслить, становится очевидно, что некоторые фундаментальные предположения были неверны. В первую очередь речь идет о допущении независимости между возможными дефолтами, то есть предположении о том, что если заемщик А не выполнит обязательства по кредиту, это не повлияет на риск неплатежа заемщика Б. Впоследствии мы узнали о том, что дефолты происходят по принципу домино, то есть предыдущий дефолт может предсказать вероятность дальнейших дефолтов. Дефолт по одному ипотечному кредиту приводил к снижению стоимости находящейся поблизости недвижимости, что способствовало росту риска дефолта по соответствующим кредитам. По сути, один дом утягивал за собой соседние.

Допущение независимости фактически связанных между собой событий – распространенная ошибка в статистике.

Но давайте углубимся в эту историю. Инвестиционные банки создали модели, которые переоценили эти инвестиции. Модели, о которых мы поговорим далее в книге, – это упрощенные версии реальности. Они используют предположения о реальном мире для понимания и предсказания определенных явлений.

А кто создавал эти модели? Это были люди, которые заложили основы будущей профессии дата-сайентиста. Люди вроде нас. Статистики, экономисты, физики – люди, которые занимались машинным обучением, искусственным интеллектом и статистикой. Они работали с данными. И они были умны. Невероятно умны.

И все же что-то пошло не так. Может быть, они не сумели задать правильные вопросы? Или информация о риске и неопределенности не была должным образом донесена до лиц, принимающих решения, в результате чего у них возникла иллюзия совершенно предсказуемого рынка недвижимости? А может быть, кто-то откровенно соврал о результатах?

Но больше всего нас интересовало то, как избежать подобных ошибок в нашей собственной работе?

У нас было много вопросов, и об ответах мы могли лишь гадать, но одно было ясно – это была крупномасштабная катастрофа с данными. И она обещала быть не последней.

Всеобщие выборы в США 2016 года

8 ноября 2016 года кандидат от республиканцев Дональд Дж. Трамп победил на всеобщих выборах в Соединенных Штатах, обойдя предполагаемого лидера и кандидата от демократической партии Хиллари Клинтон. Для политических социологов это стало настоящим шоком, поскольку их модели не предсказывали его победу. А год был самым подходящим для подобных предсказаний.

В 2008 году Нейт Сильвер, автор блога FiveThirtyEight, тогда бывшего частью газеты The New York Times, проделал фантастическую работу и предсказал победу Барака Обамы. В то время эксперты скептически относились к способности его алгоритма прогнозирования точно предсказывать результаты выборов. В 2012 году Нейт Сильвер снова оказался в центре внимания, предсказав очередную победу Обамы.

К этому моменту деловой мир уже начал осваивать работу с данными и нанимать дата-сайентистов. Успешное предсказание переизбрания Барака Обамы Нейтом Сильвером лишь подчеркнуло важность и оракулоподобные возможности прогнозирования на основе данных. Статьи в деловых журналах предостерегали руководителей о том, что если они не освоят работу с данными, то проиграют в конкурентной борьбе. Промышленный комплекс науки о данных заработал в полную силу.

К 2016 году каждое крупное новостное издание вложило средства в алгоритм предсказания исхода всеобщих выборов. Подавляющее большинство из них прогнозировали сокрушительную победу кандидата от демократической партии Хиллари Клинтон. Как же они ошибались.

Давайте сравним эту ошибку с кризисом субстандартного ипотечного кредитования. Можно было бы утверждать, что мы многому научились и что интерес к науке о данных должен был бы позволить избежать ошибок прошлого. Действительно, начиная с 2008 года, новостные организации стали нанимать дата-сайентистов, вкладывать средства в проведение опросов общественного мнения, формировать команды аналитиков и тратить большое количество денег на сбор качественных данных.

Что же произошло, учитывая все это время, деньги, усилия и образование?[4]

Наша гипотеза

Почему возникают подобные проблемы с данными? Мы видим три причины: сложность проблемы, недостаток критического мышления и плохая коммуникация.

Во-первых (как мы уже говорили), работа с данными зачастую очень сложна. Даже при наличии большого количества данных, подходящих инструментов, методик и умнейших аналитиков случаются ошибки. Прогнозы могут и будут оказываться ошибочными. И это не критика данных и статистики. Такова реальность.

Перейти на страницу:

Все книги серии Мировой компьютерный бестселлер

Похожие книги

1С: Управление торговлей 8.2
1С: Управление торговлей 8.2

Современные торговые предприятия предлагают своим клиентам широчайший ассортимент товаров, который исчисляется тысячами и десятками тысяч наименований. Причем многие позиции могут реализовываться на разных условиях: предоплата, отсрочка платежи, скидка, наценка, объем партии, и т.д. Клиенты зачастую делятся на категории – VIP-клиент, обычный клиент, постоянный клиент, мелкооптовый клиент, и т.д. Товарные позиции могут комплектоваться и разукомплектовываться, многие товары подлежат обязательной сертификации и гигиеническим исследованиям, некондиционные позиции необходимо списывать, на складах периодически должна проводиться инвентаризация, каждая компания должна иметь свою маркетинговую политику и т.д., вообщем – современное торговое предприятие представляет живой организм, находящийся в постоянном движении.Очевидно, что вся эта кипучая деятельность требует автоматизации. Для решения этой задачи существуют специальные программные средства, и в этой книге мы познакомим вам с самым популярным продуктом, предназначенным для автоматизации деятельности торгового предприятия – «1С Управление торговлей», которое реализовано на новейшей технологической платформе версии 1С 8.2.

Алексей Анатольевич Гладкий

Финансы / Программирование, программы, базы данных
C++ Primer Plus
C++ Primer Plus

C++ Primer Plus is a carefully crafted, complete tutorial on one of the most significant and widely used programming languages today. An accessible and easy-to-use self-study guide, this book is appropriate for both serious students of programming as well as developers already proficient in other languages.The sixth edition of C++ Primer Plus has been updated and expanded to cover the latest developments in C++, including a detailed look at the new C++11 standard.Author and educator Stephen Prata has created an introduction to C++ that is instructive, clear, and insightful. Fundamental programming concepts are explained along with details of the C++ language. Many short, practical examples illustrate just one or two concepts at a time, encouraging readers to master new topics by immediately putting them to use.Review questions and programming exercises at the end of each chapter help readers zero in on the most critical information and digest the most difficult concepts.In C++ Primer Plus, you'll find depth, breadth, and a variety of teaching techniques and tools to enhance your learning:• A new detailed chapter on the changes and additional capabilities introduced in the C++11 standard• Complete, integrated discussion of both basic C language and additional C++ features• Clear guidance about when and why to use a feature• Hands-on learning with concise and simple examples that develop your understanding a concept or two at a time• Hundreds of practical sample programs• Review questions and programming exercises at the end of each chapter to test your understanding• Coverage of generic C++ gives you the greatest possible flexibility• Teaches the ISO standard, including discussions of templates, the Standard Template Library, the string class, exceptions, RTTI, and namespaces

Стивен Прата

Программирование, программы, базы данных
Programming with POSIX® Threads
Programming with POSIX® Threads

With this practical book, you will attain a solid understanding of threads and will discover how to put this powerful mode of programming to work in real-world applications. The primary advantage of threaded programming is that it enables your applications to accomplish more than one task at the same time by using the number-crunching power of multiprocessor parallelism and by automatically exploiting I/O concurrency in your code, even on a single processor machine. The result: applications that are faster, more responsive to users, and often easier to maintain. Threaded programming is particularly well suited to network programming where it helps alleviate the bottleneck of slow network I/O. This book offers an in-depth description of the IEEE operating system interface standard, POSIX (Portable Operating System Interface) threads, commonly called Pthreads. Written for experienced C programmers, but assuming no previous knowledge of threads, the book explains basic concepts such as asynchronous programming, the lifecycle of a thread, and synchronization. You then move to more advanced topics such as attributes objects, thread-specific data, and realtime scheduling. An entire chapter is devoted to "real code," with a look at barriers, read/write locks, the work queue manager, and how to utilize existing libraries. In addition, the book tackles one of the thorniest problems faced by thread programmers-debugging-with valuable suggestions on how to avoid code errors and performance problems from the outset. Numerous annotated examples are used to illustrate real-world concepts. A Pthreads mini-reference and a look at future standardization are also included.

David Butenhof

Программирование, программы, базы данных