Читаем Разберись в Data Science полностью

Разберись в Data Science

Перед вами исчерпывающее руководство по основам Data Science. С помощью него вы сможете научиться мыслить статистически и понимать, какую роль в вашей работе играет аналитика, пользоваться языком науки о данных, избегать распространенных ошибок при работе с ними и, наконец, разобраться в полезных инструментах, которые используют эксперты.В формате PDF A4 сохранен издательский макет книги.

Алекс Дж. Гатман , Джордан Голдмейер

Программирование, программы, базы данных18+

Алекс Дж. Гатман, Джордан Голдмейер

Разберись в Data Science

Как освоить науку о данных и научиться думать как эксперт

Jordan Goldmeier, Alex J. Gutman

BECOMING A DATA HEAD: How to Think, Speak and Understand Data Science, Statistics and Machine Learning

Copyright © 2021 by John Wiley & Sons, Inc., Indianapolis, Indiana

All Rights Reserved. This translation published under license with the original publisher John Wiley & Sons, Inc.


© Райтман М. А., перевод на русский язык, 2023

© Оформление. ООО «Издательство «Эксмо», 2023

* * *

Посвящается моим детям Элли, Уильяму и Эллен.

Элли было три года, когда она узнала, что ее папа – «доктор».

Озадаченно посмотрев на меня, она сказала: «Но ведь ты не помогаешь людям…»

Памятуя об этом, я также посвящаю эту книгу вам, читатель.

Надеюсь, что она вам поможет.

– Алекс

Посвящается Стивену и Мелиссе.

– Джордан


Предисловие

Книга «Разберись в Data Science» вышла очень своевременно, учитывая текущую ситуацию с данными и аналитикой в организациях. Давайте кратко пробежимся по последним событиям. Начиная с 1970-х годов лишь немногие передовые компании эффективно использовали данные и аналитику для принятия решений и обоснования своих действий. Большинство игнорировало этот ценный ресурс или не придавало ему особого значения.

В 2000-х годах ситуация стала меняться, и компании начали понимать, как они могут изменить свою ситуацию с помощью данных и аналитики. К началу 2010-х годов интерес стал смещаться в сторону «больших данных», которые изначально появились в интернет-компаниях, а затем распространились по всей экономике. В связи с возросшим объемом и сложностью данных в компаниях возникла роль «дата-сайентиста», опять же, сначала в Силиконовой долине, а затем повсюду.

Однако как только фирмы начали приспосабливаться к большим данным, в период с 2015 по 2018 год акцент во многих фирмах снова сместился, на этот раз в сторону искусственного интеллекта. Сбор, хранение и анализ больших данных уступили место машинному обучению, обработке естественного языка и автоматизации.

В основе этих быстрых сдвигов фокуса лежал ряд допущений относительно данных и аналитики, распространенных внутри организаций. Я рад сообщить, что книга «Разберись в Data Science» разрушает многие из них и делает это весьма своевременно. Многие люди, внимательно наблюдающие за этими тенденциями, уже начинают признавать, что эти допущения направляют нас по непродуктивному пути. В оставшейся части этого предисловия я опишу пять взаимосвязанных допущений и то, как изложенные в этой книге идеи обоснованно опровергают их.


Допущение 1. Аналитика, большие данные и ИИ – совершенно разные явления.

Многие полагают, что «традиционная» аналитика, большие данные и ИИ – это отдельные явления. Однако авторы книги «Разберись в Data Science» справедливо считают, что эти вещи тесно связаны друг с другом. Все они требуют статистического мышления, использования традиционных аналитических подходов, вроде регрессионного анализа, а также методов визуализации данных. Предиктивная аналитика – это, по сути, то же самое, что и контролируемое машинное обучение. Кроме того, большинство методов анализа данных работают с наборами данных любого размера. Короче говоря, главный по данным может эффективно работать во всех трех областях, так что заострять внимание на различиях между ними не очень продуктивно.


Допущение 2. В этой песочнице могут играть только дата-сайентисты.

Мы часто прославляли дата-сайентистов, полагая, что только они способны эффективно работать с данными и аналитикой. Тем не менее в настоящее время зарождается важная тенденция к демократизации этих идей, и все больше организаций расширяют полномочия «гражданских специалистов по работе с данным». Автоматизированные инструменты машинного обучения упрощают создание моделей, которые отлично справляются с прогнозированием. Разумеется, нам все еще нужны профессиональные дата-сайентисты для разработки новых алгоритмов и проверки работы гражданских специалистов, занимающихся сложным анализом. Однако организации, которые демократизируют занятие аналитикой и наукой о данных, привлекая к этому «любителей», способны значительно расширить использование этих важных возможностей.


Допущение 3. Дата-сайентисты – это единороги, обладающими всеми необходимыми навыками.

Перейти на страницу:

Все книги серии Мировой компьютерный бестселлер

Похожие книги

1С: Управление торговлей 8.2
1С: Управление торговлей 8.2

Современные торговые предприятия предлагают своим клиентам широчайший ассортимент товаров, который исчисляется тысячами и десятками тысяч наименований. Причем многие позиции могут реализовываться на разных условиях: предоплата, отсрочка платежи, скидка, наценка, объем партии, и т.д. Клиенты зачастую делятся на категории – VIP-клиент, обычный клиент, постоянный клиент, мелкооптовый клиент, и т.д. Товарные позиции могут комплектоваться и разукомплектовываться, многие товары подлежат обязательной сертификации и гигиеническим исследованиям, некондиционные позиции необходимо списывать, на складах периодически должна проводиться инвентаризация, каждая компания должна иметь свою маркетинговую политику и т.д., вообщем – современное торговое предприятие представляет живой организм, находящийся в постоянном движении.Очевидно, что вся эта кипучая деятельность требует автоматизации. Для решения этой задачи существуют специальные программные средства, и в этой книге мы познакомим вам с самым популярным продуктом, предназначенным для автоматизации деятельности торгового предприятия – «1С Управление торговлей», которое реализовано на новейшей технологической платформе версии 1С 8.2.

Алексей Анатольевич Гладкий

Финансы / Программирование, программы, базы данных
C++ Primer Plus
C++ Primer Plus

C++ Primer Plus is a carefully crafted, complete tutorial on one of the most significant and widely used programming languages today. An accessible and easy-to-use self-study guide, this book is appropriate for both serious students of programming as well as developers already proficient in other languages.The sixth edition of C++ Primer Plus has been updated and expanded to cover the latest developments in C++, including a detailed look at the new C++11 standard.Author and educator Stephen Prata has created an introduction to C++ that is instructive, clear, and insightful. Fundamental programming concepts are explained along with details of the C++ language. Many short, practical examples illustrate just one or two concepts at a time, encouraging readers to master new topics by immediately putting them to use.Review questions and programming exercises at the end of each chapter help readers zero in on the most critical information and digest the most difficult concepts.In C++ Primer Plus, you'll find depth, breadth, and a variety of teaching techniques and tools to enhance your learning:• A new detailed chapter on the changes and additional capabilities introduced in the C++11 standard• Complete, integrated discussion of both basic C language and additional C++ features• Clear guidance about when and why to use a feature• Hands-on learning with concise and simple examples that develop your understanding a concept or two at a time• Hundreds of practical sample programs• Review questions and programming exercises at the end of each chapter to test your understanding• Coverage of generic C++ gives you the greatest possible flexibility• Teaches the ISO standard, including discussions of templates, the Standard Template Library, the string class, exceptions, RTTI, and namespaces

Стивен Прата

Программирование, программы, базы данных
Programming with POSIX® Threads
Programming with POSIX® Threads

With this practical book, you will attain a solid understanding of threads and will discover how to put this powerful mode of programming to work in real-world applications. The primary advantage of threaded programming is that it enables your applications to accomplish more than one task at the same time by using the number-crunching power of multiprocessor parallelism and by automatically exploiting I/O concurrency in your code, even on a single processor machine. The result: applications that are faster, more responsive to users, and often easier to maintain. Threaded programming is particularly well suited to network programming where it helps alleviate the bottleneck of slow network I/O. This book offers an in-depth description of the IEEE operating system interface standard, POSIX (Portable Operating System Interface) threads, commonly called Pthreads. Written for experienced C programmers, but assuming no previous knowledge of threads, the book explains basic concepts such as asynchronous programming, the lifecycle of a thread, and synchronization. You then move to more advanced topics such as attributes objects, thread-specific data, and realtime scheduling. An entire chapter is devoted to "real code," with a look at barriers, read/write locks, the work queue manager, and how to utilize existing libraries. In addition, the book tackles one of the thorniest problems faced by thread programmers-debugging-with valuable suggestions on how to avoid code errors and performance problems from the outset. Numerous annotated examples are used to illustrate real-world concepts. A Pthreads mini-reference and a look at future standardization are also included.

David Butenhof

Программирование, программы, базы данных