На каждом рисунке представлена доходность за 288 месячных периодов для каждой пары активов за 24-летний период с января 1975 г. по декабрь 1998 г. Каждая точка на графике представляет доходность за один из этих месяцев; доходность первого актива представлена по оси
На рис. 3.3 представлена ежемесячная доходность акций S&P 500 по сравнению с доходностью акций мелких компаний США за 1975–1998 гг. Большинство точек лежит почти на прямой линии; низкая доходность одного актива неизбежно связана с низкой доходностью другого актива. Коэффициент корреляции равен 0,777, весьма высокий для этих двух активов. Этот график показывает, что добавление акций мелких компаний США в портфель, состоящий из акций крупных компаний США, снижает риск не очень значительно, поскольку низкая доходность одного актива, по всей вероятности, связана с низкой доходностью другого актива.
Рис. 3.3.
На рис. 3.4 представлено два слабо коррелированных актива – акции крупных компаний США (индекс S&P 500) и акции крупных иностранных компаний (индекс EAFE). Хотя связь между этими активами не кажется слабой, она далека от совершенной. Коэффициент корреляции этой пары равен 0,483.
Рис. 3.4.
Рис. 3.5.
Наконец, на рис. 3.5 представлено два очень слабо коррелированных актива (коэффициент корреляции 0,068): акции мелких японских компаний и REITs. Этот график представляет собой рассеянную диаграмму, в которой отсутствует видимая модель. Хороший или плохой результат по одному из этих активов ничего не говорит нам о результате по другому активу.
Математические подробности: как рассчитать коэффициент корреляции
В предыдущее издание этой книги я включил раздел по расчету коэффициента корреляции вручную. В эпоху персональных компьютеров это мучительное упражнение. Самый простой способ расчетов – использование электронной таблицы. Предположим, что у вас есть значения ежемесячной доходности (за 36 месяцев) двух активов, А и В. Введите значения доходности в колонки А и В, одну рядом с другой, и создайте ряды с 1-го по 36-й для каждой пары значений.
В Excel введите в отдельную ячейку формулу CORREL (A1:A36, В1:В36)
В Quattro Pro формула будет такая: @CORREL (А1..А36, В1..В36)
В обоих пакетах есть инструмент для расчета «корреляционной сетки» для всех корреляций набора данных более чем по двум активам. Те из вас, кто хотел бы посмотреть объяснение шагов, связанных с расчетом коэффициента корреляции, могут почитать стандартный учебник по статистике.
Почему это так важно? Как мы уже говорили, большинство выгод диверсификации связано с некоррелированными активами. Вышеприведенный анализ позволяет предположить, что не слишком выгодно сочетать акции мелких и крупных компаний США и что очень выгодно сочетать REITs и акции мелких японских компаний. В реальном мире инвестиций дело обстоит именно так.
Резюме
1. Концепция корреляции активов лежит в основе теории портфелей: чем ниже корреляция, тем лучше.
2. Диверсификация вашего портфеля с помощью некоррелированных активов уменьшает риск и увеличивает доходность. Необходимо периодически восстанавливать баланс вашего портфеля, чтобы увеличивать доходность.
4. Поведение реальных портфелей