Чтобы найти величину неравенства между отношениями, представляющими: одно — результат сложной пропорции или отношения отношений 12 к 3 и 3 к 1, другое — результат сложной пропорции или отношения отношений 8 к 2 и 2 к 1, должно поступить таким же образом. Во-первых, величина пропорции 12 к 3 выражается 4, или 4 будет показателем пропорции 12 к 3, а 3 будет показателем пропорции 3 к 1, показатель же пропорции показателей 4 и 3 будет 4/3. Во-вторых, показателем пропорции 8 к 2 будет 4, и 2 к 1 будет 2, показатель же показателей 4 и 2 будет 2. Наконец, неравенство между отношениями, представляющими результат отношений отношений, будет разность между 4/3 и 2, т. е, 1/3. Итак, прибавив 1/3 к отношению пропорций 12 к 3 и 3 к 1 или отняв 1/3 от отношения других пропорций 8 к 2 и 2 к 1, мы приведем к равенству эти отношения отношений и получим сложную пропорцию. Таким образом, можно пользоваться сложением и вычитанием для уравнения величин и их отношений, как простых, так и сложных, и для получения точной идеи о величине их неравенства.
Правда, мы пользуемся умножениями и делениями, как простыми, так и сложными, но умножение и деление лишь сложные сложения и вычитания. Умножить 4 на 3 значит взять 4 слагаемым столько раз, сколько раз единица будет слагаемым в 3, или найти такое число, которое имеет такое же отношение к 4, какое 3 имеет кГ единице. Разделить 12 на 4 значит отнимать 4 от 12 столько раз,|к сколько это возможно, т. е. найти такое отношение к единице»яИ которое равнялось бы отношению 12 к 4; ибо 3, которое буд^
491
показателем его, имеет такое же отношение к единице, какое 12 имеет к 4. Извлечения квадратных и кубических корней и т. п. суть лишь деления, посредством которых мы ищем одну, две или три средние пропорциональные.
Очевидно, что разум человеческий так ограничен, память его так неверна, воображение так узко, что без применения цифр и письма и без искусства арифметического было бы невозможно производить необходимые действия для отыскания неравенства величин и их
отношений. Если дано несколько чисел, которые нужно прибавлять или отнимать, или, что то же самое, если эти числа велики и их можно прибавлять лишь по частям, — мы всегда забывали бы какое-нибудь число. Нет воображения такого обширного, чтобыскладывать слишком большие дроби, как-то: ——, —————; или
вычитать их одну из другой. 4093 10431Умножения, деления и извлечения корней целых чисел бесконечно труднее'простых сложений и вычитаний; разум, один, без помощи арифметики, слишком ограничен и слаб, чтобы делать их, и мне бесполезно останавливаться на доказательствах этого.
Между тем анализ или алгебра опять нечто совсем иное, чем арифметика: она гораздо меньше раздвояет способность разума, она сокращает идеи самым простым и легким способом, какой только можно себе представить. То, что в арифметике требует много времени, в алгебре делается моментально, причем разум не сбивается ни переменою цифр, ни длиною действий. Отдельное арифметическое действие открывает только одну истину; подобное же алгебраическое действие открывает их много; наконец, есть вещи, и вещи доступные познанию и необходимые, которых нельзя познать посредством одной арифметики. Я думаю, что все полезное, что люди могут знать с точностью, может без познано посредством арифметики и алгебры. Эти две науки служат основанием всех остальных и дают верные средства к приобретению всех точных знаний; ибо нельзя лучше сберегать способность ума, чем это делает арифметика, а особенно алгебра.
Теперь, когда мы рассмотрели средства, с помощью которых можно сделать разум внимательнее и обширнее, — единственные средства сделать его совершеннее, т. е. просвещеннее и проницательнее, — пора перейти к правилам, которые необходимо соблюдать при решении всех вопросов. На этом я остановлюсь долго и постараюсь хорошенько выяснить на нескольких примерах, чтобы лучше показать необходимость этих правил и приучить разум пользоваться ими, так как хорошо применять эти правила гораздо важнее и труднее, чем знать их.