Читаем Разыскания о жизни и творчестве А.Ф. Лосева полностью

Обращение к интуициям античности, в том числе к античной числовой интуиции, может оказаться если не спасительным, то по крайней мере обнадеживающим для современного жизнечувствия. Так после малополезных ухищрений с дорогими антибиотиками вдруг поможет, бывает, настойка из травы, произрастающей возле дома или в придорожной канаве. Для античной математики характерно как раз — наивное ли только? — свойство простоты и пластической наглядности. (Примером античной конкретности мы и закончим.) Предельно ясным воплощением этого свойства могут служить «числа» Еврита, о них упоминает Аристотель и напоминает Лосев в своей «Критике» (163). Сохранилось предание, что упомянутый пифагореец задавался вопросом, какое число исконно присуще какой вещи, и устанавливал «однозначное» соответствие (чем-то странно похоже на метод Кантора по установлению эквивалентности множеств) путем раскладывания камешков по контуру изображения интересующей его вещи, а камешки эти сосчитывались. Теплая оглаженная и нагретая солнцем Эллады материя на ладони Еврита — вот античная феноменология, феноменология «бесконечно более отчетливая» и менее грубая, чем абстракция Аристотеля, — мы снова обратились к тексту «Критики» (86). Конечно, у современной математики нельзя отнять все те достижения «чистой» мысли, что в обычном смысле не представимы наглядно, что созерцаемы только «умственными» очами. Но где-то в самых первородных основаниях ее гнездится, к счастью, неистребимая потребность положить свое творение на ладонь, и тогда… тогда даже сам Хаос может предстать в законченном и вполне обозримом виде, как это случилось, например, после недавней «визуализации» геометрии дробных (верх абстракции!) размерностей — геометрии так называемых фракталов, специально придуманных для характеристики изломанного, иррегулярного мира нестационарных явлений. Диковинным изображением фрактального объекта на экране дисплея современного компьютера возвращаются к нам камешки Еврита. Так сопрягаются новоевропейская отвлеченность и античная наглядность.

3.2. Кантор plus Лосев


(о неединственности натурального ряда чисел)


Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже