Читаем Разыскания о жизни и творчестве А.Ф. Лосева полностью

Известный факт, что число (в широком смысле) занимало фундаментальное место в мировоззрении А.Ф. Лосева, вполне объясняет тот стойкий интерес, с которым он относился к творчеству Георга Кантора, создателя математической теории множеств и реформатора оснований самой математики. Искреннее восхищение достижениями последнего мы можем найти в самых поздних высказываниях Лосева, в пору, когда сам он уже оставил активную деятельность на поприще методологии математики во исполнение долга перед историей античной философии, в пору, когда сама теория множеств предстает классически ясным антиком среди величайших достижений мысли. По-иному отмечены первые десятилетия нашего века, когда Лосев только еще подступал к диалектическому пониманию «очисленности» бытия, а русская культурная общественность начинала осваивать новомодные идеи из области точных наук, и в первую очередь из теории относительности А. Эйнштейна и теории упомянутого немецкого математика 1. Революция 1917 года перечеркнула затем многие начинания, но она же прихотливым образом пощадила это интеллектуальное поветрие и даже особым образом совместила его с новой социальной базой. Наверное, потому среди первых (около 1921 года) литературных опытов Андрея Платонова мы находим «популярные» разъяснения о пролетарской сути движения со скоростью света и энергичное обещание скоро («в один из близких дней») поведать столь же актуальную оценку… да, именно учения Кантора 2. Несколько лет спустя и вдалеке от воронежского паровозного депо, а именно в Москве и усилиями 30-летнего Алексея Лосева готовился коллективный сборник философских исследований «на темы математические, астрономические и механические». Здесь планировалась публикация, среди прочего, статьи Валериана Муравьева «об ипостасийном построении учения о множествах» и работы самого составителя о математических учениях Плотина и Ямвлиха 3. Увы, «философский пароход» 1922 года уже отошел тогда от берегов России, затея «свободного от социологии» обсуждения проблем числа была обречена на провал, а потенциальных авторов сборника дожидалась «трудовая перековка» в сталинской лагерной кузнице. Сейчас остается лишь печалиться по этой невоплотившейся мечте соединения под одной обложкой теорий числа, отделенных временным зиянием в две, без малого, тысячи лет. Можно и порадоваться, что жизнь не всегда обделяла Лосева единомышленниками. К упомянутому В.Н. Муравьеву — ему грезилось торжество «всеобщей производительной математики», с каковым «законы множества станут, вообще, законами природы» 4, — следует обязательно добавить имя П.А. Флоренского. Он также планировался участником в предприятии 1924 года. С канторовской теорией множеств, с ее судьбой на отечественной почве П.А. Флоренский связан уже тем, что ему принадлежало первое на русском языке изложение новых математических идей для широкой публики (имеется в виду статья «О символах бесконечности» в журнале «Новый путь» за 1904 год). И для него, как и для двух других интерпретаторов, был характерен высокий, если не пифагорейский, то уж точно — платонический градус интеллектуальной напряженности взгляда на теорию множеств.

Да, именно таким будет суммарный вывод, если его делать по совокупности многочисленных упоминаний Кантора и его научных результатов в работах «раннего» Лосева: в теории множеств приветствуется прочтение числа глазами Платона. Утверждение это верно уже по букве, ибо для своего учения о трансфинитах Кантор применял как синоним обозначение «теория идеальных чисел» и напрямую определял «множество» как «нечто, родственное платоновскому ????? и ????». Верно оно и по духу, коли математические достижения Кантора оказываются глубже его историко-философских сопоставлений. Так, совершенно ошибочно ставя на одну доску (по взглядам на число) Платона и Аристотеля, сам он противопоставлял число, отнесенное, «согласно его истинному происхождению», к множеству как единосвязному целому, с числом как простым знаком «для единичных вещей, отсчитываемых при субъективном процессе счета» 5, и в противопоставлении этом явно отвергал аристотелевскую теорию абстракции в пользу «ипостасийности» (по Платону) числа. Другой пример: не ведая о глубочайше проработанной символико-числовой диалектике у античных неоплатоников, Кантор своими набросками теории «порядковых типов», похоже, дал некий формальный аналог для мифологических иерархий («чинов») актуально бесконечных богов-чисел в смысле Прокла. Разумеется, такое (задним числом — поздним умом) сопряжение канторовского и платонического подходов к «аритмологии» мы теперь без особой опаски можем делать только после мощного посредничества Лосева.

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже