Здесь представляется уместным сказать несколько подробнее о некоторых особенностях духовного пути Н.Н. Лузина. Известно, что еще молодым человеком он пережил мировоззренческий кризис, связанный с необходимостью выбора специальности в науке и, главное, с ранним прикосновением к острейшим проблемам оснований математики (теоретико-множественные парадоксы, проблема континуума). Он отшатнулся от разверзшейся бездны, и даже многолетняя дружба с П.А. Флоренским не принесла облегчения. В своем отчаянном письме к нему Н.Н. Лузин писал, отрекаясь от прежних надежд: «Вы ищете бестрепетного сердца непреложной Истины, оснований всему <…>, а я… я не жду последних „как“ и „почему“, и, боясь бесконечного, я сторонюсь его, я не верю в него» 13
. Он обманывал себя утешением, что сделался «специалистом» и «стал просто математиком» (констатация из той же переписки с П.А. Флоренским), отчего профессия его, конечно же, только выиграла: многие результаты Лузина вошли в классику мировой математики. Однако те самые «как» и «почему» вновь встали перед ним, «философом от математики» (лузинское самоопределение), когда он близко познакомился с Лосевым – «математиком от философии» (как определили бы мы). Сама жизнь подтолкнула их навстречу друг другу и как бы дополнила их автономные существа до некоего целого, пусть и на короткое время и для разрешения, может быть, одного-единственного вопроса, но зато какого – о природе бесконечного. О чем они спорили вечерами в квартирах на Арбате у Лузина или на Воздвиженке у Лосева? Для Лузина воистину личной и воистину уязвляющей представала «область загадок континуума», разрешить которые он хотел, положив все силы на «уничтожение идеи актуальной бесконечности». И – полный крах вместо ожидаемого триумфа 14. Для Лосева идея актуальной бесконечности не только изначально близка: «бесконечность в любых ее смыслах, и в научно-математическом, и в философском смысле, была для меня подлинной реальностью, включая сюда и многие мои бытовые переживания» 15. Она еще подлежала философскому обоснованию, которое, надо признать, автору «Диалектических основ математики» вполне удалось. Потому и понятно, что лосевские рассуждения о подлинно диалектическом, иерархийном устройстве мира бесконечностей или о структуре континуума (да, сама «бесструктурность», сама «неразличимость» и «сплошность» имеют, по Лосеву, свой особый и узнаваемый лик!) выражены в столь торжественной тональности. Так разыгрывается драма идей в ее кульминационных точках.