Проделанная нами работа, которую нужно рассматривать не более чем как введение
в периодическую систему начал по Лосеву, не затронула многого. Скажем, нужно иметь в виду принципиальную важность для мыслителя проблемы символа и мифа (понимаемых, разумеется, по-лосевски, т.е. данных в строгом категориальном наполнении), потому в ряде работ «восьмикнижия» тетрактида и производные от нее получали еще особую символическую и, для «старших» начал, мифологическую модуляцию. Очень интересна в логическом отношении – хотя и не только в логическом – трехмерная (или абсолютная) диалектика, которую Лосев развивал в одном фрагменте, вероятно, относящемся к работе «Дополнение к „Диалектике мифа“». Весьма неожиданную и многообещающую (в плане возможного системостроительства) «саморефлексию» тетрактиды на пентаду Лосев наметил в довольно поздней работе «Логическая теория числа» 46 и др. Эти темы, несомненно, заслуживают отдельного и заинтересованного рассмотрения.Однако уже и предложенных материалов, как представляется, вполне достаточно для непредубежденного читателя, чтобы он обнаружил в трудах Лосева немало важных и волнующих проблем
, а также, быть может, и долгожданные ответы на некоторые из тех вопросов, которые жизнь уже поставила, никого не спросясь.3.7. Гипотеза о типах бесконечности
Прежде чем говорить о возможных типах бесконечности, уточним, какая вообще точка зрения на бесконечность и ее место в мире нами используется и отчасти будет развиваться в дальнейшем. Этот важный вопрос – точное указание исходной позиции исследователя – в свое время немало занимал как Г. Кантора, создателя математического учения о бесконечности, так и П.А. Флоренского, автора едва ли не первого в России изложения канторовской теории множеств. Ниже мы воспользуемся некоторыми материалами одной из давних работ последнего.
С бесконечностью, как вслед за Кантором утверждал Флоренский, всюду имея в виду именно актуальную
бесконечность, «мы сталкиваемся или, по крайней мере, можем надеяться на столкновение в трех различных областях»: это Absolutum «в высшем совершенстве, во вполне независимом, вне-мировом бытии», in Deo; это Transfinitum в природе, «в зависимом мире, в твари», in concreto; это, наконец, символы бесконечности «в духе», in abstracto, поскольку дух «имеет возможность познавать Transfinitum в природе и, до известной степени, Absolutum в Боге» 1. В области Transfinitum’а эти символы выступают под названием «трансфинитных чисел» или «трансфинитных (порядковых) типов» и составляют предмет теории множеств. В каждой из трех указанных областей актуальная бесконечность может либо приниматься, либо отвергаться исследователем. Отсюда возникают различные комбинации утверждений и отрицаний.
Общее распределение всех мыслимых систем в их отношении к бесконечности Флоренский изображал 2
с помощью окружности с вписанным в нее правильным шестиугольником, на вершинах которого схематически отображены утверждения (знак +) и отрицания (знак –) факта бесконечности в каждом из трех отношений – in Deo (у Флоренского обозначено буквой D от слова Deus), in abstracto (обозначено буквой S от слова Spiritus) и, наконец, in concreto (обозначено буквой N от слова Natura). Каждая из вершин соединена со всеми другими вершинами прямыми линиями, и полученные таким образом разнообразные треугольники схематически представляют все возможности из набора систем воззрений на бесконечность (сам набор в целом символизирован окружностью). Конечно, сразу следует изъять из рассмотрения те комбинации, в которых утверждения совмещаются с отрицаниями при одном и том же отношении к бесконечности. В условном изображении это означает, что диаметрально противоположные вершины не могут здесь соединяться прямыми.На построенной таким образом диаграмме Флоренского позиция самого Кантора, его «безусловно утвердительная точка зрения, признающая существование всех трех видов актуально-бесконечного» 3
, получает изображение посредством треугольника D+ S+ N+. Впрочем, хорошо известно, что почти все свои усилия он отдал развитию знаний в области S+, обращаясь к заповедной области D+ никак не для прямого исследования, но только для получения общефилософских и богословских аргументов в пользу своих математических новшеств. Весьма кратковременными были его посещения области N+. Во всяком случае, нам известна только одна публикация, в которой с целью «безупречного объяснения природы» Кантор выдвигал предположение о непосредственных связях между выведенным в его теории формальным (в частности пятичленным) разложением точечных множеств и принципиальным различием «телесных» и «эфирных» атомов 4.